
Scenario scripting guide

Version 0.1 alfa

Scenario scripting guide
For Trainsimulator 201x

Rudolf Heijink

Version 0.2, November 2014

Copyright © 2014 Rudolf Heijink. All rights reserved. It is not allowed to modify, print or distribute this

document or parts of this document.

Scenario scripting guide

Version 0.2 alfa

2

Preface

I proudly present the second alpha version of my scenario scripting guide. II spent a lot of time

collecting all information needed, and it is far from done. This is as far as I got until now.

I hope it will encourage you to start crating scripts and experiment with it. I also hope you are willing to

share your findings with me and with the TS community.

Contact me at rudolfjan@klantprocessenboek.nl if you have additional information or corrections.

Do not expect me to work as a helpdesk for scripting questions. All I know is in this guide.

You can use the guide for personal use, but it is not allowed to copy it or redistribute it in any form.

Acknowledgements

Tankski has started a google document that describes some of this information in more detail. It can be

found here: https://docs.google.com/document/d/19gn ... ring&pli=1

VTrian for the cinematic camera tutorial

Richard Scott for the beautiful GWR Railcar on the front page.

Chris Longhurst for his research on playing sounds and the function with respect to signalling. (And of

course for his beautiful Dutch train models!).

Bob Artim and Peter Hayes for their list of startup parameters

All members of the TS2014 community that somehow shared information that helps to create this guide.

New in this version

1. Texts restructured at some places.

2. New information on debugging.

3. New information on message function.

4. A fair number of code examples added.

5. Some information on advanced lua scripting techniques added.

6. Overview of statup commands added.

Rudolf Heijink

mailto:rudolfjan@klantprocessenboek.nl
https://docs.google.com/document/d/19gnyrDe553WTy6AJqqLCkGyMfFwIFDnR9oeVGCflcdE/edit?usp=sharing&pli=1

Scenario scripting guide

Version 0.2 alfa

3

Contents
Preface.. 2

1 Introduction .. 6

2 Getting started ... 6

2.1 Knowledge prerequisites .. 6

2.2 Lua version ... 7

2.3 Tools ... 7

2.4 Development environment .. 7

2.5 Debugging...10

2.5.1 Using logmate ...10

2.5.2 Speed up scenario play ..14

2.5.3 Print for debug ..14

2.5.4 An alternative logging system ...14

3 Organization ...17

3.1 Directory structure ..17

3.2 Accessing your script from inside TS2014 ...18

3.3 Basic API call ...20

3.4 Include files ..20

4 Events ...22

4.1 The event loop ..22

4.2 Basic events ...22

4.3 Adding lua code to the trigger event..23

4.4 Adding lua code to the other basic events ...24

5 Lua functionality for TS2014 ...26

6 General scenario manager functions ...27

6.1 Object identification..27

6.2 Game function calls ..27

6.3 Event handling ..27

6.4 Saving and resuming a scenario ...28

6.5 Locking controls ..29

6.6 Forcing scenario completion ...29

6.7 Condition checks ...29

Scenario scripting guide

Version 0.2 alfa

4

7 Displaying messages ...31

7.1 Introduction ...31

7.2 Message types ..32

7.2.1 Simple message ..32

7.2.2 Alert message ...32

7.3 Info message ...33

7.4 HTML messages ...35

8 Camera control ...40

8.1 Consist camera functions ...40

8.2 The cinematic camera..42

9 Engine functions ..45

9.1 Generics ...45

9.1.1 Call or SysCall?..46

9.1.2 Set a control directly to a value. ...46

9.1.3 Toggle a control value between on and off ..47

9.1.4 Emulate a gradual increase/decrease of a control value..47

9.2 Engine controls..47

9.3 Track information ..48

9.4 Consist information ...49

9.5 Identification and information ...49

9.6 Speed ...50

9.7 Signalling interaction ...50

9.7.1 Signals ...50

9.7.2 AWS functions ...51

10 Other functions ...53

10.1 Time and season ...53

10.2 Whistle function ...53

10.3 Play video ..53

10.4 Play audio ..53

10.5 Weather events ..54

11 Scripting applications ..57

11.1 Logging your debugging messages ...57

Scenario scripting guide

Version 0.2 alfa

5

11.2 Train length and train mass ..58

11.3 Destination boards for ChrisTrains models ...59

11.4 AWS audible alert outside the cab view ...62

11.5 Overspeed detection ..66

11.6 Thunder ...74

11.7 Emergency brake ...74

11.8 Speed limit monitoring ...74

11.9 Monitoring closing the train doors ...78

A. Appendix Framework code ..82

B. Appendix verified control functions overview ...82

C. Appendix Unverified control functions ..82

C.1 Train Controls ...82

C.2 Electric Locomotive Controls ...83

C.3 Steam Locomotive Related Controls ...83

C.4 Output values for Dials* ...83

C.5 Steam ..83

D. Start options for TS 201x ..84

E. Useful lua constructs ...86

E.1 Case statement in lua ...86

E.2 Associative arrays ...87

E.3 Object classes ...87

Scenario scripting guide

Version 0.1 alfa

1 Introduction

TS2014 makes it easier to add scripting functions to scenarios. In fact, it already was possible, but a bit

hidden in previous versions. The new functions are still undocumented. I did not want to wait till proper

documentation is available, so I decided to create a guide for scripting.

It is still incomplete and maybe not always correct, so I hope you will contribute to new versions of this

guide by providing me your tips and corrections.

Please contact me by mail: rudolfjan@klantprocessenboek.nl

This guide will be available on Steam, UKTS, Railworks America, Treinpunt and Dutchrail Europe.

2 Getting started

2.1 Knowledge prerequisites

It will help you a lot if you have some basic knowledge before you start to attempt using this guide:

I assume you know how to create scenarios and that you can use the different scenario event types. If

not, I suggest you take some time to learn how to create scenarios.

Some general knowledge on programming is very helpful, e.g. Visual Basic, or programming languages

like Pascal or C. Make sure you know what is meant by following concepts:

 Variable

 If … then … else

 Function

 Syntax





Since LUA is used as a scripting language, knowing LUA may help as well.

A book to learn LUA (I recommend to buy this book and study it carefully)

http://www.lua.org/pil/

A tutorial for experienced programmers:

http://lua-users.org/wiki/TutorialDirectory

The tutorial is part of a large wiki, which provides many solutions and examples for common problems.

http://lua-users.org/

A LUA reference manual online:

mailto:rudolfjan@klantprocessenboek.nl
http://www.lua.org/pil/
http://lua-users.org/wiki/TutorialDirectory
http://lua-users.org/

Scenario scripting guide

Version 0.2 alfa

7

http://www.lua.org/manual/5.1/

You also need some HTML knowledge. HTML is mark-up programming language for internet pages.

http://www.htmldog.com/guides/html/beginner/

HTML is mainly used to make fancy dialogs, but you can include things like playing sounds, showing

images etc. I will give some examples later in this guide.

Some useful tutorials at Railworks America:

 Creating fancy lua supported dialogs

 Adding Cinematics

2.2 Lua version

TS2014 uses lua version 5.02 You should be aware of this, because it is not the latest version of lua.

2.3 Tools

It helps a lot if you install SciTE on your local system

 It is available at http://www.scintilla.org/SciTEDownload.html

You also may want to use Microsoft XML Notepad (http://www.microsoft.com/en-

us/download/details.aspx?id=7973), which helps you to view and edit XML files.

http://www.pspad.com/ is a general code editor, which can be used for HTML code. It can interface to

your browser, to get a preview of the edited code.

If you want to use HTML display messages, you need at least some understanding of HTML code. Several

online introductions are available, e.g.:

http://www.w3schools.com/html/

It may be useful to have hex editor available:

http://mh-nexus.de/en/hxd/

(This one seems to work. Be careful, some “free” tools are not free at all).

2.4 Development environment

One way to create scenario scripts is just create a separate independent script for each individual

scenario. This method has serious disadvantages for maintenance:

1. Copies of your script are cluttered over a number of locations, which are hard to find back,

because all file names are the same and you may have trouble finding the last version.

2. If you need to change anything in a certain script, you need to copy the changes in all scripts.

http://www.lua.org/manual/5.1/
http://www.htmldog.com/guides/html/beginner/
http://railworksamerica.com/index.php/component/k2/item/219-creating-extended-dialogs
http://railworksamerica.com/index.php/component/k2/item/220-adding-cinematics
http://www.scintilla.org/SciTEDownload.html
http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://www.pspad.com/
http://www.w3schools.com/html/
http://mh-nexus.de/en/hxd/

Scenario scripting guide

Version 0.2 alfa

8

Therefore I use a way of working that avoids these problems. I created in my assets folder two folders,

called luadev and lua. Luadev I use to develop new scripts or to create new versions of scripts. When a

script is stable I just copy the files to the folder lua.

Most code goes in a script file that resides in this folder structure:

In the scenario folder, I create a script called ScenarioScript.lua as required by TS.

I try to keep the amount of code in this script to a bare minimum:

-[[

 Scenarioscript for testing Guard functions

 (C) 2014 Rudolf Heijink

 Version 0.1 alfa

]]--

DEBUG=true

scriptpath=".\\assets\\RudolfJan\\luadev\\"

dofile(scriptpath .. "common.lua")

dofile(scriptpath .. "debug.lua")

mydebug=DebugTS.new()

dofile(scriptpath .. "Guard.lua")

params={

Scenario scripting guide

Version 0.2 alfa

9

 "22948520",

 "whistleconductorwhistle.wav",

 true

 }

function OnEvent(event)

 if event=="start" then

 guard=Guard.new(unpack(params))

 guard:Begin()

 return TRUE

 end

 return FALSE

end

function OnResume()

 mydebug=DebugTS.new()

 guard=Guard.new(unpack(params))

 guard:Begin()

 mydebug.writeDebug("Resumed guard")

end

function TestCondition (condition)

 if condition == guard.ConditionName then

 guard:Check()

 return CONDITION_NOT_YET_MET

 end

 return CONDITION_NOT_YET_MET

end

The basic components you need here:

Code Function
DEBUG=true

Variable to turn debugging support on or off

scriptpath=".\\assets\\RudolfJan\\luadev\\"

Path to the asset folder. On release, it is

necessary to change the foldername here to

lua
dofile(scriptpath .. "common.lua")

This loads the modules you need

params={

 "22948520",

 "whistleconductorwhistle.wav",

 true

 }

This code I use to set scenario specific

parameters for the script. It will become clear

later in this guide how this works.

In the current scripts, you also see the event handler here. In principle you can create a separate

eventhandling file as well. I have not done this yet, (this guide is still alpha version), but it is worth

considering to change this.

Scenario scripting guide

Version 0.2 alfa

10

I also am thinking about the use of version numbers in the script filename. This would solve possible

compatibility problems if I change anything in a particular script. In a next version of this guide, more on

that topic.

2.5 Debugging

The start of the debugging process is the reload function. This will reveal syntax errors. The advantage is

that it is very fast. Also the compilation stage may reveal additional syntax errors.

The default solution provided for debugging scripts is to use logmate. Logmate is easy to use, but has

one big disadvantage. It has avery negative effect on game performance. So, for testing scripts it helps

to use a simple route (e.g. TestTrack, Seebergbahn or create your own testing route), otherwise you

spend lots of time waiting for the game to load.

I created a better logging solution, which will be described in this chapter, but you still need LogMate.

LogMate is necessary to find hard programming bugs. In most cases it will report functions that do not

exist or variables with nil values. There is no easy to use other way to find these errors.

2.5.1 Using logmate

You can use logmate to display hard scripting errors. The lua “error” function will display in logmate in

the “script manager” tab. Logmate will also show all output of “Print” statements, provided you have set

the DEBUG variable in your script to value true NB true is not the same as TRUE!!!

The only way I know to activate logmate is to right click on TS 201x,

choose Properties, General, Set launch options and insert:

Scenario scripting guide

Version 0.2 alfa

11

Scenario scripting guide

Version 0.2 alfa

12

exactly as typed. It may or may not work.

-LogMate -SetLogFilters="Script Manager" -lua-debug-messages

The option –lua-debug-messages instructs logmate to show the results of “Print” statements, provided

you have included the statement

DEBUG=true

In your script

Note:

Use “Script Manager” as filter, not the “All” variant you usually see. Using the “All” filter reduces

performance significantly.

Tip:

Run Trainsimulator windowed. Especially if you have a second screen, you can have a look at the

Logmate while playing. Open TS, in the Main Menu select the Settings button (upper right on the screen)

Choose Graphics

Scenario scripting guide

Version 0.2 alfa

13

Set “Full screen” to Windowed and reduce the screen resolution a bit

Scenario scripting guide

Version 0.2 alfa

14

2.5.2 Speed up scenario play

When you load up a scenario and hold [ctrl] while you left click on a train/loco and the AI will drive it for

you through all instructions and you can just enjoy the landscape. You won't have access to the

standard passengerview but you can adjust the camera position to go inside the wagons. With

[PageUp] and [PageDown] you can switch between the trains.

Also: when you add the option "- EnableAsyncKeys" to the start options (as described in the previous

paragraph) you can speed up the time through pressing [ctrl] + [shift] +[1] up to [5] (1 normal speed, 2

double, 5 is 5x speed).

2.5.3 Print for debug

Since there is not a full blown source level debugger for LUA, you need to use some form of print

statements to monitor and debug script execution

The LUA “Print” function will print the results in LogMate, but you must set the value for the variable

DEBUG:

DEBUG=true

Print(“Debugging is switched on now”)

You also must set the start option –lua-debug-messages

Note:

I have long been confused, because is many scripts you see constants defined:

TRUE=1

FALSE=0

Setting DEBUG to these constants does not work!

Also, people advocate to use this:

-- No need for this!

Function DebugPrint(message)

 If DEBUG then

 Print(message)

 end

end

There is no need to do so, Print is a debug print function. There is no reason to use this construct.

2.5.4 An alternative logging system

I designed a simple logging system, that allows you to write debugging information to a separate logfile,

which you can review after program execution.

It works like this:

Scenario scripting guide

Version 0.2 alfa

15

Step 1: create a logfile. This file will be opened in append mode, so existing data will not be removed

automatically.

 file=io.open(“logfile.txt”, "a+")

You can find your logfile in the TS folder.

Step 2: define a function to write debug messages to a logfile:

-- file is a valid file handle

-- message is a string containing a text message

function writeDebug(file, message)

 dt= os.date("%d-%m-%Y/%X ")

 if(dt==nil) then

 dt=""

 end

 file:write(dt .. message ..'\n')

 file:flush()

end

I did not include error handling code, because you cannot write an error message is debug printing fails

… Normally you would handle the situation where file has value nil.

As you see I include a timestamp for each message.

Step 3: close the logfile when done (optional)

file:close()

If you do not close the logfile, it will be locked by TS, so you cannot delete it while TS is running. I did not

yet find a suitable function, something like OnExit() that is run at the end of a scenario to solve this issue.

You may want to use the print function to send data to logmate as well. In this example a debugging

condition must be met. In your script you can activate debugging by defining a variable

 DEBUG = true

 in your script. If DEBUG=0, nothing will be printed,

-- file is a valid file handle

-- message is a string containing a text message

function writeDebug(file, message)

 if(DEBUG) then

 …

 end

end

Alternatively, you can also send messages to your TS screen. In this case you do not need to create a

file first, but you cannot include a large number of debug statements.

Scenario scripting guide

Version 0.2 alfa

16

function DebugPrint(message)

 if (DEBUG) then

 SysCall ("ScenarioManager:ShowMessage", message);

 End

End

This command will show a message in the upper right corner of the screen during some time.

Note: the code shown here is not optimally decent programmed. In a next update better functions will

be provided and I will try to use more object oriented techniques.

Scenario scripting guide

Version 0.2 alfa

17

3 Organization

3.1 Directory structure

Your LUA scenario script must be called

 ScenarioScript.lua

If you use media, create in the scenario directory a directory for the languages you support, e.g. EN for

English. See example below.

In the example you see .png images. If these a language neutral, you just store them in the scenario

directory. If they are localised, store them in the language specific directory.

The execution directory for lua scripts is the Trainsimulator program content directory, normally:

C:\Program Files (x86)\Steam\SteamApps\common\RailWorks\Content

Scenario scripting guide

Version 0.2 alfa

18

So, if you want to access files from other directories you need to take this into account. It is not a very

good idea to use hard paths to directories, so you either need to find a way to access the registry from

lua or you need to use relative paths.

Example, I use some common libraries in my assets folder, which can be accessed using the following

path string:

.\assets\\RudolfJan\lua\common.lua

The . (dot) means the current directory. You also may use .. (two dots), meaning start in the parent

directory.

You need to escape the backslashes if you use this in lua commands, e.g. in the dofile command,

which executes common.lu in this example:

dofile(".\\assets\\RudolfJan\\lua\\common.lua")

dofile is a lua library function, very useful.

3.2 Accessing your script from inside TS2014

You can access the LUA script for the scenario edit function in TS2014. You need to open the Timetable

view (2D editor view),

and will see then two new buttons:

Scenario scripting guide

Version 0.2 alfa

19

The left button opens a view on the LUA script. The right button opens a string definition screen. <<not

yet clear to me what it exactly does, more info comes later>>..

If you click on the LUA button, a pop-up screen appears:

You can use this screen to have a look at the LUA script. It does not show embedded files. Unfortunately

most scripts provided by RSC are compiled, so it is difficult to use them as examples for your own

development.

Open folder will open the scenario folder. If you have SciTE installed, you can now right click on the .lua

file to edit it.

Before you can use the script, you need to compile it, using the Compile/Generate MD5 button.

Scenario scripting guide

Version 0.2 alfa

20

Probably you need to press Reload before you can start executing the scenario again. Reload is useful

anyway, because it will report syntax errors in your script.

As you see, you have no access to the HTML files that may be used, so I thing the best way to proceed,

is to open the folder and do all editing using proper tools.

The Strings pop-up looks like this:

I have no idea what you can do with it. Adding a string creates u new GUID (Globally Unique IDentifier),

to which you can add a string description.

3.3 Basic API call

The basic call for TS API is SysCall(command, ..) Please note that in documentation you may find the

use of Call as the API calling function. This does not seem to work in scenarios. I wasted some time for a

script to obtain the consist mass. It did not work using Call, but works perfectly well by just replacing Call

by SysCall.

3.4 Include files

It may helpful to include common files you add as assets to a scenario. You can do this using following

code:

assetpath=".\\assets\\RudolfJan\\luafile.lua"

dofile(assetpath)

Scenario scripting guide

Version 0.2 alfa

21

dofile opens the path and executes its contents on the fly. I think this code will not be compiled and

compressed, because you can determine which file to use dynamically. This makes the mechanism very

powerful.

Scenario scripting guide

Version 0.2 alfa

22

4 Events

4.1 The event loop

Scenario scripts are small pieces of code that are executed if an event fires. A scenario script therefore

always needs to handle events.

An event is something that happens during your drive. For instance, a trigger instruction can be an

event, but also after loading passengers, or a scheduled stop may trigger events.

Your script always should contain following code:

-- true/false defn

FALSE = 0

TRUE = 1

-- Fn OnEvent

-- event - name of the event

-- return - TRUE/FALSE if event handled

function OnEvent (event)

 if (event == “start”) then

 -- code here

 return TRUE – event handled

 end

return FALSE

end

This function allows you to pick up events, and choose to handle them. In the code above an if

statement is used for each event. In the OnEvent function, you include a similar structure for each event

you want to handle.

NB Event names are case sensitive, so Start denotes a separate event from start.

The function OnEvent may return either TRUE or FALSE

In case you return FALSE TS2014 will execute its own system code, for instance to display the message

after a stop. If you return TRUE, TS2014 will assume no further handling is required on this event.

4.2 Basic events

Even without lua programming, some basic events can be set, You know them well:

a) The trigger event

b) The stop event

c) The load event

d) The coupling event

e) The uncoupling event

f) The go via event

Scenario scripting guide

Version 0.2 alfa

23

All but the Go via event allow to add additional triggers after the basic events have occurred.

4.3 Adding lua code to the trigger event

It is quite common to use a trigger instruction as an event.

If you want to do so, create a trigger event using the 2D scenario editor.

You just need to give the trigger event a name, as you see in the example above. In this case, the

name “start” is used. Make sure that you never use a name twice in the same scenario.

Now, if the trigger event fires, you can handle it. A short code example:

function OnEvent (event)

-- Instruction triggers

Scenario scripting guide

Version 0.2 alfa

24

-- Timed triggers

 if event == "start" then – do something

 -- Your code here

 return TRUE;

 end

 return FALSE;

end

In the example you see that the function OnEvent, is extended now. The line

if event == “start”

contains instructions on what to do on this trigger. In this case it starts looking around, and disables all

controls, so the engineer just has to wait. I will explain the instructions later into more detail.

Note that you return TRUE after handling the start event. If not any event is handled, FALSE is returned, to

tell TS2014 it should handle the event itself.

NB. Note in the trigger instruction some events are predefined.:

a) A wheelslip event

b) An emergency stop event

c) An event that displays a text box

The first two events can be activated by placing a checkmark, the third one is activated if you enter a

text.

4.4 Adding lua code to the other basic events

Following basic events support adding lua event handling in the same way:

a) The stop event

b) The load event

c) The coupling event

d) The uncoupling event

For these events TS2014 always executes the basic event first. You can add events the for three different

results of the basic event:

a) The event is always triggered.

b) The event is triggered in case the basis event failed

c) The event is triggerd in case the basic event succeeded

Scenario scripting guide

Version 0.2 alfa

25

In the screenshot you can see where you can enter the event identifiers.

The names I used are samples. Any identifier text is allowed.

Scenario scripting guide

Version 0.2 alfa

26

5 Lua functionality for TS2014

In the previous chapters I provided the basics to get started. Now we will focus on the functionality

TS2014 provides to scenario scripting.

The good news is that al lot of things are possible. The bad news is the very poor documentation. To

make it worse, for different engines commands may be implemented in a different way. You will need a

lot of trial and error, even for simple actions like starting or stopping an engine.

I will describe in following chapters what I discovered. The chapters contain following topics:

a) General scenario manager functions

b) Displaying messages

c) Camera control

d) Engine functions

e) Other functions

Please, let me know if you discover new possibilities.

TS2014 distinguishes several different modules. Up till now I discovered following “managers”:

a) Scenario Manager

b) Camera Manager

For engines there does not appear to be an explicit management unit, you use specific commands to

control an engine.

Scenario scripting guide

Version 0.2 alfa

27

6 General scenario manager functions

6.1 Object identification

Any method call that begins Call(“<Entity>:...”) where <Entity> is anything such as

<ParticleEmitter> or <ChildName> can also be called using the Call(“*:...”) qualifier so the

parent and all descendant entities are checked, rather than specifying the entity to check.

You can always identify the player engine using the name “PlayerEngine”, for example:

SysCall ("PlayerEngine:SetControlValue", "Headlights", 0, 1);

PlayerEngine replaces the “*” here.

SysCall ("PlayerEngine:SetControlValue", "Startup", 0, -1);

And the same for an AI :-

SysCall ("8510:SetControlValue", Startup, 0, 0.0);

8510 is the reference to a specific engine or waggon. I did not yet do very much testing with this, but it

opens possibilities like starting or stopping engines in a multiple working separately. I already fancy the

idea of a scenario where a helper engine suddenly fails…

6.2 Game function calls

No idea if this is useful.

1. SysCall("ControlSound:SetParameter", "SignalProgress", 1) - Sound trigger? "SignalProgress" =

name/ID in xml? 1 = boolean for start/stop?

2. SysCall("Set2DMapSignalState", gSignalState) - Setting 2D map state: gSignalState holds int

depending on constant inputted?

3. SysCall("SendSignalMessage", newBlockState, "", -1, 1, 0) - Send message along track, not sure

which way round tho'

4. SysCall("SendConsistMessage", SPAD_MESSAGE, "") - Sends message to consist above signal link:

SPAD_MESSAGE is text to send?

5. SysCall("GetConnectedLink", linkCountAsString, 1, 0) - Finds link num connected to link 0 of signal

6. SysCall("GetLinkCount") - Finds num of links on signal

7. SysCall("GetId") - gets name of signal

6.3 Event handling

The OnEvent function has been described before. There are few other functions that may be useful as

well:

function Initialise()

Scenario scripting guide

Version 0.2 alfa

28

Function that is called once upon scenario initialization. Should be used to set up variables/simulation

elements of a script at the start of a scenario e.g. turning off/on lights. It is called before the signalling is

set up properly.

Note: mind the spelling it only works when spelled with “s”, initialize() will NOT work.

function Setup()

Function that is called once when the script is initialized (e.g. when the player clicks the consist.) Can be

used for when an event is to occur when the consist is clicked, e.g. raising a pantograph.

Following functions seem NOT to work in scenario scripts. They probably can be used in engine scripts

only.

function Update(interval)

Function that is called every new frame to update the entities simulation. Parameter interval is the

time since last update (known as the delta time, or delta for short.).

Similar, there are eventhandlers like OnInitialise() that allow you to add simulation functionality.

function OnCameraEnter(cabEnd, carriageCam)

Probably not working in scenario scripts.

Function that is called when the player camera enters a cab or passenger view. Parameter cabEnd is

the cab that the player has entered and is either 1 or 2 and carriageCam denotes whether it was a

passenger view or not, being 1 if it is a passenger view.

function OnCameraLeave()

Function that is called when the player leaves a camera view for another.

6.4 Saving and resuming a scenario

The first step is initialization code.

function Initialise()

 HideFireworks();

end -- function Initialise()

There is also an event handler that fires when you resume simulation:

Scenario scripting guide

Version 0.2 alfa

29

function OnResume()

 HideFireworks();

end -- function OnResume()

The example is from the Horse Shoe curve scenario, using fireworks.

I did not yet discover any way to store data when you save a scenario with the Save function. Save

does not work, OnSave does not work etcetera… Let me know if you have any idea.

6.5 Locking controls

One thing you can do is lock all controls, forcing the engineer just to watch:

SysCall ("ScenarioManager:LockControls");

You can just copy this code.

Do not forget to unlock the controls later:

SysCall ("ScenarioManager:UnlockControls");

6.6 Forcing scenario completion

Two functions that terminate a scenario. The first triggers a success, the second failure.

SysCall ("ScenarioManager:TriggerScenarioComplete, message);

Triggers a scenario failure and displays an appropriate message:

SysCall ("ScenarioManager:TriggerScenarioFailure", message);

6.7 Condition checks

A function that checks at regular intervals for a specific condition, with a specific name.

SysCall ("ScenarioManager:BeginConditionCheck", condition);

condition is a unique identifier representation a condition.

You need to define a function that checks for this condition:

function TestCondition (condition)

Scenario scripting guide

Version 0.2 alfa

30

Inside this function you evaluate the conditions

which returns a status with respect to the condition:

CONDITION_NOT_YET_MET = 0

CONDITION_SUCCEEDED = 1

CONDITION_FAILED = 2

I think this may be useful if you want to stop checking for a condition, without doing this explicitly from

an event. I did not yet need or use this construct.

To stop the condition check, you need this call:

SysCall ("ScenarioManager:EndConditionCheck", condition);

A complete sample skeleton may look like this:

Step 1 uses following code:

if (event== “startMonitoring”) then

 SysCall ("ScenarioManager:BeginConditionCheck", "MyCondition");

return TRUE

end

“MyCondition” is a name you can choose for the condition you like to monitor.

Step 2 requires a function that performs the monitoring:

function TestCondition (condition)

 if (condition == "MyCondition") then

 -- here goes your code on what to monitor

 end

return CONDITION_NOT_YET_MET

end

This allows you to use monitor that runs forever but also monitoring that will stop, depending on the

condition, e.g. you may want to wait till a specific time or till you meet an AI consist …

Step 3 is to stop monitoring:

if (event== “stopMonitoring”) then

 SysCall ("ScenarioManager:EndConditionCheck", "MyCondition");

return TRUE

end

Tip:

You should be aware that is the user saves the game and continues later, state information of a

condition check may be lost. For instance, in the speed check Thomas Ross created, the speed

Scenario scripting guide

Version 0.2 alfa

31

violations are counted, but the counter is reset when you resume the game. You need to make sure all

relevant data are stored somewhere and retrieved on resume. In chapter Fout! Verwijzingsbron niet

gevonden. it is explained you can use commands like OnResume() to achieve this.

7 Displaying messages

7.1 Introduction

TS201x supports several different methods to display messages:

 Messages coupled to predefined events. These messages do not need any lua programming.

 You can add these simple messages as well by programming them in lua code and attach

them to events. I found three different functions to show messages, each with own features.

 You also can use message with HTML markup. This allows the use of images, tables, colours and

other fancy markup.

For programmed messages, lu will give you an error message if something is wrong, but unfortunately it

does not give any further details:

In the next section four different message types will be discussed in more detail:

1. Simple messages, using the same simple layout and placement as the messages you can create

without programming in the events.

2. Alert messages which appear in the upper right corner and therefore are far less intrusive for the

game play.

3. Extended info massages which offer fine grained control in placement and behaviour

4. HTML messages with advanced markup features.

Scenario scripting guide

Version 0.2 alfa

32

7.2 Message types

7.2.1 Simple message

The easiest way to display a message is to use this command:

SysCall ("ScenarioManager:ShowMessage", message);

It will display a message text at the centre of the screen.

Function OnEvent(event)

if event==”start” then

 SysCall("ScenarioManager:ShowMessage",”Simple message”)

 return TRUE

end

return FALSE

end

The result looks like this and appears in the middle of the screen. Game is not paused and the message

is displayed for a fixed quite long time.

7.2.2 Alert message

This command shows an alert message in the upper right corner of the screen.

SysCall("ScenarioManager:ShowAlertMessageExt" header, text, duration, pause)

Example:

Scenario scripting guide

Version 0.2 alfa

33

SysCall("ScenarioManager:ShowAlertMessageExt", "Speed monitor", "Speed limit

changes to " .. self.NextSpeedLimit .. unittext .."\n distance " ..

self.Distance .. "m", 10)

Results in this output:

Note: I used “\n” to force a new line.

7.3 Info message

The basic function to display messages has this syntax:

SysCall ("ScenarioManager:ShowInfoMessageExt", header, message, duration,

position, size, pause);

Parameter Description Comments

command Fixed value, see syntax

header Message header text

message Message body text

duration No of seconds the message is show, 0 means

until user clicks

position Place on the screen where the message will

be displayed

size Message size

pause If TRUE, pause the gameplay while you

display the message.

Very useful, fi if you want to give

a complex instruction to the

user while driving.

Note: do not use the Boolean

variable true or false. This results

in an invalid argument error

message!

For position use following values:

Direction Value Description Comments

Vertical MSG_TOP Top position

Vertical MSG_VCENTRE Middle position

between top and

bottom

Vertical MSG_BOTTOM Bottom position

Horizontal MSG_LEFT Left position

Horizontal MSG_CENTRE Middle position

Scenario scripting guide

Version 0.2 alfa

34

Horizontal MSG_RIGHT Right position

You should always combine a horizontal and vertical position. The screens you see without using lua

have the position value MSG_CENTRE+MSG_VCENTRE, which places them in the middle of the screen.

So lua allows you to do something about this annoy practice.

Position can be a combination of values. RSC defined some macros, which I extended to a more

complete set. You need to define these values in your script:

-- Message positions

MSG_TOP = 1

MSG_VCENTRE = 2

MSG_BOTTOM = 4

MSG_LEFT = 8

MSG_CENTRE = 16

MSG_RIGHT = 32

Some useful combinations:

-- useful combinations

MSG_TOPLEFT = 9

MSG_TOPRIGHT = 33

The other goody is that you can define three different sizes:

Size Value Description Comments

Small MSG_SMALL Small messagebox (like

alert message)

Regular MSG_REG Normal sized message

box

Large MSG_LARGE Large sized message

box

You need to define these values in your script:

-- Message box size

MSG_SMALL = 0

MSG_REG = 1

MSG_LRG = 2

Example:

SysCall ("ScenarioManager:ShowInfoMessageExt", "Header", "Info message", 30,

MSG_TOPLEFT, MSG_REG, TRUE);

Scenario scripting guide

Version 0.2 alfa

35

7.4 HTML messages

The command for HTML messages is very similar as the one for Info messages, but the meaning of the

third and fourth parameter is different:

SysCall ("ScenarioManager:ShowInfoMessageExt", GUID , html, duration, position,

size, pause);

The parameters must be filled as described in the table:

Parameter Description Comment

command As above, fixed

GUID A GUD I suggest you use the GUID that identifies the

scenario. Rumors say you must use the same GUID

for all messages in one scenario. I think this GUID

allows the html code to return properly

html Filename of html script See below for details, there some issues

duration Time In seconds the

message is shown, if zero, it

is shown till the user closes

the message

position See previous chapter for

details, works the same

way

size See previous chapter for

details, works the same

way

pause If TRUE, the game pauses

during message display

Scenario scripting guide

Version 0.2 alfa

36

You need to create an html file. Because localization is supported for html messages, you must create a

subdirectory, with the language abbreviation you want to support. I suggest you always create a

directory named “EN” as a default language. Additionally, you can create directories for other

languages, e.g “NL” for Dutch. If you do not know which abbreviation to use, check the TS2014 manuals

directory.

Note: the folder name may be case sensitive. Chris Longhurst reported this for playing sounds. I did not

check this thoroughly for HTML messages yet.

Sample folder structure:

You see here three language dependent folders with html scripts. The images, e.g. wycom.jpg are not

language dependent and therefore are stored in the scenario directory.

The html sample RSC uses are not of a very high quality. I provide a better sample here:

Scenario scripting guide

Version 0.2 alfa

37

In my sample you see the top line of the text is properly aligned with image. I also like the image better

…

The html code is shown below:

The most important trick is to use tables to structure the images and texts.

Line 4 opens a table, with a single row (line 5). The row has two columns, one with the image (line 6-8)

and a second one with the text (line 11- 16).

I do not know what kind of stuff the html supports. It would be interesting if would be interesting if it

supports javascript, or external content. I did not try. Let me know …

One last sample, showing more complex use of tables:

Scenario scripting guide

Version 0.2 alfa

38

And the html code used:

<html>

 <body bgcolor="#0000007F">

 <table width="350">

 <tr valign="top">

 <td width="130">

 </td>

 <td width="2">

 </td>

 <td>

 Ongeldige bestemming

 </td>

 </tr>

 <table>

 <table width="350">

 <tr>

 <td>

 De bestemming <font color="#eeee00" face="arial"

size="4">Alkmaar is geen geldige bestemming voor deze trein. Kies een

bestemming uit onderstaande lijst. Gebruik <i>exact</i> de tekst uit de

lijst!.

 <p></p>

 </td>

 </tr>

 </table>

Scenario scripting guide

Version 0.2 alfa

39

 <table valign="top" width="350" border="1" bordercolor="#eeee00"

cellpadding="4">

 <tr>

 <tr>

 <td>Niet

instappen</td>

 <td width="2"</td>

 <td>

 Extra trein</td>

 </tr>

 <tr>

 <td><font color="#ffffff" face="arial"

size="4">Alkmaar</td>

 <td width="2"</td>

 <td>

 Amsterdam</td>

 </tr>

 <tr>

 <td><font color="#ffffff" face="arial"

size="4">Groningen</td>

 <td width="2"</td>

 <td>

 Utrecht Centraal</td>

 </tr>

 <tr>

 <td><font color="#ffffff" face="arial"

size="4">Zwolle</td>

 <td width="2"</td>

 <td></td>

 </tr>

 </table>

 </body>

</html>

The html code for this sample is completely generated in lua. As soon as I find out how to store the code

in the correct directory, I will use it in my scripts. I intend to create this html on the fly from and display it

for TS2014 users.

Note: a way to access the correct folder is to store both the route GUID and the scenario GUID in your

script. This can be done but it is not a very elegant method, therefore I did not yet use this.

Scenario scripting guide

Version 0.2 alfa

40

8 Camera control

TS201x has a separate camera manager. I am aware of two different functions:

a) Controlling the Engine cameras from lua scripting. E.g. you may use it to force cab view.

b) To control the cinematic camera.

Both subjects will be covered in different paragraphs.

8.1 Consist camera functions

The function to activate a camera is:

SysCall ("CameraManager:ActivateCamera", camera, duration);

Parameter Description Comment

command Fixed value

camera Camera name, see list below

duration Time in seconds during which

this camera is active

.Any other value will return to

the previous camera at the end

of the time.

The cameras probably use these names:

Camera Lua name Keyboard mapping

Cab camera CabCamera 1

 ExternalCamera 2

 ExternalCamera 3

Track side camera TrackSideCamera 4

Passenger view CarriageCamera 5

Coupling view CouplingCamera 6

 YardCamera 7

 FreeCamera 8

 DerailmentCamera

 EditCamera

 CinematicCamera

 ShapeViewerCamera

TODO test all cameras

Example:

SysCall ("CameraManager:ActivateCamera", "CabCamera", 0);

forces Cabview. I do not know what the last parameter means.

Scenario scripting guide

Version 0.2 alfa

41

You can also use the scenario marker to force cabview, but this does not allow you to switch later on to

cab view.

Allowed camera types:

CabCamera

FreeCamera

TrackSideCamera

YardCamera

Coupling Camera (or CouplingCamera?)

HeadOutCamera (seems to work only for left Head out, but maybe extra parameter

needed?)

SysCall ("CameraManager:ActivateCamera", CameraType, Duration);

Parameters:

Allowed camera types:

CabCamera

FreeCamera

TrackSideCamera

YardCamera

CouplingCamera

HeadOutCamera

ExternalCamera

(HeadOutCamera seems to work only for left Head out, but maybe extra parameter needed?)

Possibly camera instructions:

 ActivateRearCamera

 ActivateHeadOutCamera

 ActivateCarriageCamera

 ActivateTrackSideCamera

 ActivateCouplingCamera

 ActivateYardCamera

 ActivateFollowCamera

 ActivateCabCamera

 ActivateDerailmentCamera

 ActivateFreeCam

 ActivateCamera

 SwitchToNextFrontCab

 SwitchToNextRearCab



function OnCameraEnter(cabEnd, carriageCam)

Scenario scripting guide

Version 0.2 alfa

42

Function that is called when the player camera enters a cab or passenger view. Parameter cabEnd is

the cab that the player has entered and is either 1 or 2 and carriageCam denotes whether it was a

passenger view or not, being 1 if it is a passenger view.

Note: I could not get this working in a scenario script. Maybe it is not exposed in the scenario scripting

API.

function OnCameraLeave()

Function that is called when the player leaves a camera view for another.

Note: same problem: not working for scenarios.

if cabside < 1.5 then

 Call("*:SetControlValue", "Frontcabactive", 0, 1)

 Call("*:SetControlValue", "Rearcabactive", 0, 0)

 end

 if cabside > 1.5 then

 Call("*:SetControlValue", "Frontcabactive", 0, 0)

 Call("*:SetControlValue", "Rearcabactive", 0, 1)

 end

8.2 The cinematic camera

This text is not yet verified!

I've managed to get a cinematic moving camera working, but when it came to the freecamera I

couldn't seem to get the co-ords correct and kept ending up miles away! Eventually tracked down that

the Long value (second co-ordinate in the top "compass" drop down) goes in the X box, the Lat in the Y

and Z is the height!

To use a cinematic camera, you first must select the cinematic camera object from your asset list.

You can find it in the list of miscellaneous assets:

Scenario scripting guide

Version 0.2 alfa

43

You need to place it in a scenario and give it a name. You can use this name in the commands to

control the camera.

SysCall ("CameraManager:ActivateCamera", CinematicCameraName, 0);

Use this to start the cinematic camera created in the scenario editor. This is used in the flying camera at

the start of the first Horseshoe Curve scenario.

Video ogg files need to sit in the En folder. Only image files that work seem to be png (tried Gif and jpeg

don’t work).

Add a trigger event to this train with the default 00:00 time. Give this a name in the event trigger e.g.

"StartCam".

Name the camera the same as the trigger event name "StartCam". There is an Object name box. Set

the camera offset to 5-10 seconds and add another cinematic camera by clicking the Add control

point button (Orange triangle with green cross). This adds another camera to track to.

4) Click the Script button. Next to the red flag and then click reload. This should open the script file

provided it is present in the scenario folder. Will error if not found.

You can click the open folder button to open the folder to view/edit the script file.

Scenario scripting guide

Version 0.2 alfa

44

Looking at the script and a sub section:-

--

-- Fn OnEvent

-- event - name of the event

-- return - TRUE/FALSE if event handled

function OnEvent (event)

-- Timed triggers

if event == "StartCam" then -- Pan around at train

SysCall ("CameraManager:ActivateCamera", "StartCam", 0);

SysCall ("CameraManager:ActivateCamera", "Getsite", 0);

return TRUE;

Enter the following 3 calls to make the camera point at any object placed in the scenario

SysCall ("CameraManager:ActivateCamera", "FreeCamera", Duration);

SysCall ("CameraManager:JumpTo" , Longitude, Latitude ,Height);

SysCall ("CameraManager:LookAt", "ObjNum or ObjName");

To obtain an object number, double click on the object and look in the right flyout panel.

Scenario scripting guide

Version 0.2 alfa

45

9 Engine functions

9.1 Generics

You can refer to an engine in two different ways:

The player engine is called “PlayerEngine” in scripts. AI engines can be referred to with a number,

probably the consist number you in the scenario editor (I did not yet test anything for AI trains).

SysCall ("PlayerEngine:SetControlValue", "Startup", 0, -1);

SysCall ("8510:SetControlValue", Startup, 0, 0.0);

8510 is the ref to the engine or van, as shows in the right hand fly out when selecting a consist. (see

image below).

Note that this makes engine commands work on both player engine and AI, but some commands are

useful on coaches as well. A good example is door state monitoring.

Note: in this chapter sometimes the engine is referred with a “*“ symbol. You need to replace the * with

the engine to want to use.

Scenario scripting guide

Version 0.2 alfa

46

It seems that there are three methods to change engine controls:

a) Set a control directly to a value.

b) Toggle a control value between on and off

c) Emulate a gradual increase/decrease of a control value.

It is not obvious which one to use, for instance for a Glare I found a ToggleControl value, while the

acknowledge AWS seems to use the third method. It also can be different between engine types. This

makes using these commands very hard and time consuming.

9.1.1 Call or SysCall?

I found that in scenario scripts you need to use the SysCall function, not the Call function that is used in

engine scripts. The curious thing is that I found one script, that is using Call as well. Maybe my

assumption is not always valid, but I have no idea what is behind this.

9.1.2 Set a control directly to a value.

One method is to set them immediately to the desired value. You can do this with command:

SysCall(“*:SetControlValue”, “<ControlValue>”, index, value)

Method call to set the value of a control that has been specified in the engine blueprint of a

locomotive. Parameter <ControlValue> is the name of the control as it is in the engine blueprint, index

is the index in an array of controls that share the same name (should generally be 0) and value is the

value to set the control to.

For the asterisk you need to replace it with the engine/van/coach etc.

With

SysCall(“PlayerEngine:GetControlValue”, “<ControlValue>”, index)

You can retrieve a current value.

Method call to retrieve the value of a control that has been specified in the engine blueprint of a

locomotive. Parameter <ControlValue> is the name of the control as it is in the engine blueprint and

index is the index in an array of controls that share the same name (should generally be 0).

SysCall(“PlayerEngine:ControlExists”, “<ControlValue>”, index)

Method that will return 1 if a given control value exists in a blueprint or 0 if not. Parameter

<ControlValue> is the control value to check, as specified in the engine blueprint and index is the

index in an array of controls if there are multiple controls with the same name.

Useful function to check the existence for a control first.

-- Function to set a named control to the correct value if the control exists -

used to keep code compact.

function SetControl (engine, name, value)

Scenario scripting guide

Version 0.2 alfa

47

 if SysCall(engine .. ":ControlExists", name, 0) ==TRUE then

 SysCall(engine .. ":SetControlValue", name, 0, value)

 writeDebug(file,"SetControl success for ".. name)

 return true

 else

 writeDebug(file, "SetControl fails for ".. name)

 return false

 end

end

This function is also mentioned somewhere . No idea what it adds:

SysCall(“PlayerEngine:SetEngineValue”, “<ControlValue>”, value)

Method that will set the lead engine’s given control value(?) to a specified value. Parameter

<ControlValue> is the control value to affect, and value is the new value to set the control to.

Found this in an engine script:

 Call("*:SetEngineValue", "Reverser", controlValue)

9.1.3 Toggle a control value between on and off

I really do not know how to handle this kind of controls. Maybe SetControlValue will work as well. Or

ToggleControlValue maybe?

9.1.4 Emulate a gradual increase/decrease of a control value

The idea is that you should use something like “StartIncreaseControl”, “StopIncreaseControl”,

StartDecreaseControl”, “StopDecreaseControl” to achieve a gradual setting.

The strange thing is I also saw an example which uses SetControlValue to achieve a throttle setting to

zero.

This needs further investigation.

9.2 Engine controls

The big problem is the lack of documentation. Engine functions can be very specific for an model. This

offers great flexibility, but if the commands are not documented it can be hard to find out what can be

used.

Some examples:

 PantographControl does not work right at the start of a scenario, but if you wait a while, you can

use it to lower the pantographs.

Scenario scripting guide

Version 0.2 alfa

48

 Headlights works sometimes, but I could nog get it working to switch off headlights for a German

BR151

 I managed to use SetDestinationBoards on all ChrisTrains models to set destinations.

 I succeeded in using DoorsOpenStateLft and DoorsopenStateRight to get door status

 I succeeded in getting AWS state, but could not control the beviour of AWS, e.g. set AWS works,

but you cannot use the Q button to clear it.

 I did not succeed in sett Wipers on or off in the same BR151.

 For Reverser it works perfectly well, setting a value.

 Following paragraphs show the names of default controls used. Please note, these can be

customized.

You may want to look for files like Inputmapper to discover the control names to use. In the appendix I

included an unverified list.

Courtesy dtrainBNSF1

In the lua script you can use this to turn off the engine:

if event == "(customized name here)" then

 SysCall ("PlayerEngine:SetControlValue", "Startup", 0, -1);

 return TRUE

end

One thing to keep in mind: when running with multiple engines the SysCall will shut off your engine and

while you are in control of that engine it will shut off the other engines in the consist. But if you switch

controls to a different loco in the consist the all of the engines will turn on again. If you switch back to

your original engine then they'll all shut off again. Perhaps to shut off all the others where it says

"PlayerEngine" replace it with the other loco's numbers (so if I was driving loco 4569 that would be

"PlayerEngine"; if my 2nd engine in the consist was 4723 then type in "4723:SetControlValue" etc. in the

next line). I haven't tested that out yet but I probably will in the future.

This sample limits the cruisecontrol for German loco’s (e.g. Munich-Augsburg, IN+C3, BR101 etc) to 40

km/h (Not tested by me).

CurrentAFB = SysCall("PlayerEngine:GetControlValue", "AFB", 0);

if (CurrentAFB > 0.15) then

SysCall ("PlayerEngine:SetControlValue", "AFB", 0, 0.15);

end

9.3 Track information

SysCall(“*:GetGradient”)

Method that will return the grade of the track that the consist is currently on.

SysCall(“*:GetCurvature”)

http://railworksamerica.com/forum/memberlist.php?mode=viewprofile&u=3739

Scenario scripting guide

Version 0.2 alfa

49

Method that will get the curvature of the track that the consist is currently on.

SysCall(“*:GetCurvatureAhead”, distance)

Method that will get the curvature of the track at a given distance in front of the consist. Parameter

distance is the distance ahead to look in metres. It is measured as the reciprocal of the radius of the

curve (1/radius) such that the curvature of a straight line is 0.

9.4 Consist information

SysCall(“*:GetConsistLength”)

Method that will return the length of the consist at that given point in time, in metres.

SysCall(“*:GetConsistTotalMass”)

Method that will get the total mass of the consist that the entity is in, inclusive of ballast/fuel. mass is

measured in tons.

SysCall(“*:GetTotalMass”)

Method that will get the total mass of the entity that is calling this method, inclusive of ballast/fuel,

measured in tons. Will only work within an engine script/blueprint, and not a wagon script/blueprint.

SysCall(“*:GetFireboxMass”)

Method that will retrieve the mass of the firebox as a fraction of its maximum value. (Not checked)

SysCall(“*:GetRVNumber”)

Method that will return the number of the entity that called this method. The number is the attribute that

can be set in the scenario editor. It returns the number of the first van/engine in a consist. It seems not to

be indexed, so you cannot retrieve other vans.

9.5 Identification and information

Functions not checked for scenarios

SysCall(“*:GetIsPlayer”)

Method call that will return if the consist is the player consist. 1 is returned if true, else 0 is returned.

SysCall(“*:GetIsDeadEngine”)

Scenario scripting guide

Version 0.2 alfa

50

Method that will return if the engine is specified “dead” as an attribute that has been set in the scenario

editor. If true 1 is returned, else 0.

SysCall(“*:GetIsEngineWithKey”)

Method that will return 1 if the engine is being driven by the player, otherwise it will return 0.

9.6 Speed

These functions all work properly. Thomas Ross uses them in a script for Western Lines of Scotland to

monitor speed limits for steam engines.

SysCall(“*:GetSpeed”)

Method call that will return the speed the player is undergoing at that specific point in time, measured

in m/s.

SysCall(“*:GetCurrentSpeedLimit”)

Method call that will retrieve the speed limit of the section of track that the consist is currently on,

measured in m/s.

SysCall(“*:GetNextSpeedLimit”, direction)

Method call that will retrieve the next speed limit in a given direction within 10km of the entity in the

consist. Parameter direction is the direction to check, with 0 for forward and 1 for backwards. Returns

3 pieces of data; type, speed and distance. type indicates the cause of restriction on the line, speed

is the new speed restriction, measured in m/s and distance is the distance in metres that are remaining

until the new speed limit. The values that type can undertake are:

 0 - indicating end of line,

 1 - indicating speed change but no linked trackside sign,

 2 - indicating speed change with linked trackside sign,

 -1 - indicating no change in speed over the next 10km.

Not verified

SysCall(“*:GetAcceleration”)

Method call that will retrieve the acceleration the player is undergoing at that specific point in time,

measured in m/s2.

9.7 Signalling interaction

9.7.1 Signals

Not tested yet.

Scenario scripting guide

Version 0.2 alfa

51

SysCall(“PlayerEngine:GetNextRestrictiveSignal”, direction, distance,

lookfromdistance)

Method call that will gather information about the next non-green signal (such that it is not “clear”).

Parameter direction is the direction to look, with 0 for forward and 1 for backward.

Distance is the distance in meters to the signal

lookfromdistance is how far ahead of the player train to start looking. For example if you are sitting at a

red light, you can set lookfromdistance to 100 to tell the script to start looking for the next restrictive

signal from 100m ahead of you - so you can look "through" the red light where you are stopped.

Returns 4 values; type, state, distance and aspect. type is representative of the values that follow it,

and will carry a range of values itself. state indicates the state of the signal in the signalling system; 0 is

“clear”, 1 is “warning” and 2 is “stop”. distance is the distance, in metres, until the signal has been

reached and aspect is the aspect set by the signal script (that is relative to

“Set2dMapProSignalState”). For UK signals this can be:

0 - indicates signal is green,

1 - indicates signal is single yellow,

2 - indicates signal is double yellow,

3 - indicates signal is red,

10 - indicates signal is flashing single yellow,

11 - indicates signal is flashing double yellow.

The values that can be used by type are as follows:

-1 - indicates there are no restrictive signals within 10km of the consist entity,

0 - indicates end of line (such that state & aspect can be ignored),

1 - indicates there is a restrictive signal on the line within 10km, and as such, state, distance & aspect

should be checked for more info.

Note that state and aspect shouldn’t be 0 as they indicate that the signal is not restrictive.

9.7.2 AWS functions

There are three AWS functions that can be used:

AlertReset = SysCall(self.Consist .. ":GetControlValue", "AWSReset", 0)

AlertSound = SysCall(self.Consist .. ":GetControlValue", "AWSWarnCount", 0)

AWSState = SysCall(self.Consist .. ":GetControlValue", "AWS", 0)

“AWSReset” probably refers to the grace time for the driver to acknowledge an AWS alert.

Scenario scripting guide

Version 0.2 alfa

52

“AWSWarnSound” has value 1 as long as the AWS alarm is on and not acknowledged.

“AWS” is the state of AWS, It’s value remains at 1 as long as alert status is needed.

You can read the value but also set it (not tested yet). An interesting application is to make AWS alerts

outside the cab audible. See my script application in chapter 11.4.

I also tried to create a driver alert function using this, but it does not work properly, you cannot use the

Q button to reset AWS if you activate it from a scenario.

Scenario scripting guide

Version 0.2 alfa

53

10 Other functions

10.1 Time and season

local SecondsAfterMidnight= SysCall ("ScenarioManager:GetTimeOfDay")

local Season = SysCall ("ScenarioManager:GetSeason") –

Spring = 0, summer = 1, autumn/fall = 2, winter = 3

local timeNow = SysCall("*:GetSimulationTime", 0)

Day and night times, depending on season:

The seasons are as such: Spring- 1845 to 0815. Summer- 2100 to 0530. Fall- 1945 to 0645 (fall is different

than spring). Winter- 1700 to 0915. The nodes work perfectly in winter, after the 'else' statement in the

local season section. The bad news, is that no matter what season it is in the scenario, the script seems

to only run on the winter time slot. Almost like it just ignores the 0, 1 and 2 season sys calls.

(sources dogrokket see also

http://forums.uktrainsim.com/viewtopic.php?f=360&t=136967&st=0&sk=t&sd=a&start=15)

10.2 Whistle function

I have not tried this one yet and have no idea what whistle1 is :

SysCall ("whistle1:SetParameter", "ScenarioTrigger", 1.0);

10.3 Play video

For video add the following line.

SysCall ("ScenarioManager:PlayVideoMessage","0001-0250.ogg",0,1,0,0);

Ensure the ogg file is in the en folder. The various 0,1,0,0) seem to control things like video screen size,

playback with sound, and if the script waits for the video to play first then continues.

10.4 Play audio

SysCall ("ScenarioManager:PlayDialogueSound",audiofilename);

The file is looked up relative to

http://forums.uktrainsim.com/viewtopic.php?f=360&t=136967&st=0&sk=t&sd=a&start=15

Scenario scripting guide

Version 0.2 alfa

54

Content/Routes/<route-uuid>/Scenarios/<scenario-uuid>/en/.

You can escape from that path using the appropriate number of "../" sequence at the beginning of the

path.

 For some reason underscore in the file name seem to result in the file being ignored.

The file must be in the wav format (that is not the encoded form that use in other parts of the sim).

Maybe the folder name is case sensitive in lua.

Chris Longhurst says: “Seems it was the capitalisation it didn't like. I had a folder called "En". When I

changed that to "en" everything started working.”

10.5 Weather events

Call that allows to change weather conditions. Not sure how this works. You probably need to define a

weather blue print.

SysCall ("WeatherController:SetCurrentWeatherEventChain", "FirstChain")

You will need to set the extended weather option in the scenario.

Scenario scripting guide

Version 0.2 alfa

55

Click at the gear wheels and the select the extended weather.

I do not yet know how to create a proper working blueprint supporting extended weather. Coming

soon …

Scenario scripting guide

Version 0.2 alfa

56

From Railworks America (do not know who wrote this)

ok so i watch video of scenario called under the storm. and i like how guy made that thunder and

lighting storm. https://www.youtube.com/watch?v=mzYIpaequQ4

so i was looking around on how he did that and found this topic

http://forums.steampowered.com/forums/s ... 475&page=4.

so i follow what he said to make that storm for my scenario but thunder storm i'm using is from sherman

hill so it little different like i don't see a thunder in that advance weather list that he used to make it work.

and i play scenario i made and i get the change clouds and sky but no lighting or thunder or rain.

Source RWA user dtrainBNSF1

Figured out how to get the weather working for WLoS and Sherman Hill by the way :) For WLoS it's just as

you said in the guide. For Sherman Hill you need the code you mentioned in the guide and you need to

have "SH Clear to Thunderheads" and "Thunderheads" selected in game. So far testing has shown that it

won't work for any other combination. Sherman Hill has 3 storms, "FirstChain", "SecondChain" and

"FinalStorm". "FirstChain" is just a sprinkling, not much and lasts for 10 minutes then fades. "SecondChain"

begins like "FirstChain" but after 5 minutes intensifies into a downpour then at the end of its 20-minute

cycle reverts back to "FirstChain" and fades out. "FinalStorm" is a full on thunderstorm and begins within

seconds after its code activation for Sherman Hill but for WLoS the storm begins a few minutes after

code activation. For both routes the storm lasts for 20 minutes then fades out. The Sherman Hill storm has

more rain and actually causes the screen to darken. Because of how quickly the weather for Sherman

Hill activates it would be best to wait for about 15 minutes into the scenario before activating any of the

storms to allow the skies to animate properly and put the thunderheads in place otherwise the weather

looks like something from a SciFi flick and doesn't convey the type of realism I'd personally expect.

Because of the time delay of the storm for WLoS the thunderheads conceivably already move into

proper position before the storm begins so you can start the scenario with the "FinalStorm" code on

WLoS with no problem.

Another thing to note is that the storms DO NOT mesh together if you activate one after the other. The

simulator causes a short break between the storms before activating another storm, clearing the skies

for a few seconds. Not too realistic.

As expected if you want to use these storms on other routes the appropriate blueprints have to be

selected in the scenario editor.

https://www.youtube.com/watch?v=mzYIpaequQ4
http://forums.steampowered.com/forums/showthread.php?t=3138475&page=4
http://railworksamerica.com/forum/memberlist.php?mode=viewprofile&u=3739

Scenario scripting guide

Version 0.2 alfa

57

11 Scripting applications

11.1 Logging your debugging messages

Tested, This works properly

See this site for a short tutorial on the object oriented techniques That are used in this example.

RJHDebugversion="0.1 alfa"

DebugTS = {} -- the table representing the class, which will double as the

metatable for the instances

DebugTS.__index = DebugTS -- failed table lookups on the instances should fallback

to the class table, to get methods

-- syntax equivalent to "DebugTS.new = function..."

function DebugTS.new(logfile,mode)

 local self = setmetatable({}, DebugTS)

 if logfile== nil then

 self.logfile="logfile.txt" -- file name

 else

 self.logfile=logfile

 end

 if mode==nil then

 self.mode="a+" -- open mode

 else

 self.mode=mode

 end

-- You can find this file in the TS home directory

 self.debugfile= io.open(self.logfile,self.mode) --file handler for debug file

 self.writeDebug(self,"Debug script version " .. RJHDebugversion .. " loaded")

 return self

end

-- write debug message

-- message is a string containing a text message

 function DebugTS:writeDebug(message)

 local dt= os.date("%d-%m-%Y/%X ")

 if(dt==nil) then

 dt=""

 end

 self.debugfile:write(dt .. message ..'\n')

 self.debugfile:flush()

 end

Note: You can find your logfile in the TS folder. I store the script file with the name debug.lua in my assets

folder.

Usage in a scenarioscript file

scriptpath=".\\assets\\RudolfJan\\lua\\"

dofile(scriptpath .. "debug.lua")

Scenario scripting guide

Version 0.2 alfa

58

function Initialise()

mydebug=DebugTS.new()

end -- Initialise

function OnEvent(event)

 if event=="start" then

 mydebug:writeDebug("Wow, it works")

 end --start

end --OnEvent

11.2 Train length and train mass

Tested. This works properly.

function GetConsistMass(consist)

 result= SysCall(consist ..':GetConsistTotalMass')

 if(result==nil) then

 result= 0

 end

 return result

end

function GetConsistId(consist)

 result= SysCall(consist .. ':GetRVNumber')

 if(result==nil) then

 result= 0

 end

 return result

end

function ReportConsistData(consist)

 if (consist==nil) then

 consist="PlayerEngine"

 end

 length= GetTrainLength(consist)

 mass= GetConsistMass(consist)

 id= GetConsistId(consist)

 if(mass==0 or length==0) then

 SysCall ("ScenarioManager:ShowInfoMessageExt", "Train report",

"Error, train report not available", 30, MSG_TOP+MSG_LEFT, MSG_SMALL, TRUE);

 else

 message= string.format("%s%s%s%d%s%d%s ","Train number= ",id," Consist

length= ",length," metres, consist mass = ",mass," tons")

 SysCall ("ScenarioManager:ShowInfoMessageExt", "Train report",

message, 30, MSG_TOP+MSG_LEFT, MSG_REG, TRUE);

 end

end

Scenario scripting guide

Version 0.2 alfa

59

11.3 Destination boards for ChrisTrains models

This is a much more complex example. It is tested and works in principle, but I do not present a

complete example here.

ChrisTrains uses an index to pick up the correct destination. I prefer to use station names. The index

numbers change from time to time, by using the table it is easy to change it for all scenarios where you

use this. I also try to make the script more general. I hope it also works for other providers.

Create a file with a list of destinations. This file should be named <consisttype><provider>Destinations.lua

-- For each consist type specify the provider and consist, these must match the

parts in the filename

provider = "ChrisTrains"

-- Note, version 1.1 of the consist or higher is assumed

consist = "SLT"

-- Look for a file called "Inputmapper" This files gives you clues about the

command name to use.

setDestinationCommand = "DestinationBoards"

-- The first index number to be used. In most cases I assume this will be 0 or 1

indexStart = 1

-- You need to fille the table with all destinations.

destinationList= {

"Niet Instappen",

"Extra Trein",

"Alkmaar",

"Almelo",

"Almere Centrum",

"Almere Oostvaarders",

"Amersfoort Schothorst",

"Amsterdam Centraal",

"Apeldoorn",

"Arnhem",

"Baarn",

"Breda",

"Den Haag Centraal",

"Den Haag HS",

"Den Helder",

"Deventer",

"Dordrecht",

"Ede-Wageningen",

"Eindhoven",

"Enkhuizen",

"Enschede",

"Geldermalsen",

"Gouda Goverwelle",

"Groningen",

"Haarlem",

"Heerlen",

"Helmond",

"Hengelo",

"Hoek van Holland Haven",

Scenario scripting guide

Version 0.2 alfa

60

"Hoek van Holland Strand",

"Hoofddorp",

"Hoorn",

"Hoorn Kersenboogerd",

"Leeuwarden",

"Leiden Centraal",

"Lelystad Centrum",

"Maassluis West",

"Maastricht",

"Maastricht Randwyck",

"Nijmegen",

"Rhenen",

"Rijswijk",

"Roermond",

"Roosendaal",

"Rotterdam Centraal",

"Schiedam Centrum",

"Schiphol Airport",

"Sittard",

"Tiel",

"Tilburg Universiteit",

"Uitgeest",

"Utrecht Centraal",

"Utrecht Maliebaan",

"Venlo",

"Vlaardingen Centrum",

"Vlissingen",

"Weert",

"Weesp",

"Woerden",

"Zandvoort aan Zee",

"Zwolle"

}

if TEST==1 then

 writeDebug(file, "Destinations loaded for "..provider.." "..consist)

end

I stored these files in an assets folder, so they are common for all scenarios.

The destinations are stored in a destination list. To get information from the list, you need following three

functions:

-- function to iterate over a table and retieve its idex (i) and value (v)

-- Source: Programming Lua v5.2

local function iter (a, i)

 i = i + 1

 local v = a[i]

 if v then

 return i, v

 end

end

-- function that returns the next index, value pair of an associative array

Scenario scripting guide

Version 0.2 alfa

61

-- Source: Programming Lua v5.2

function ipairs (a)

 return iter, a, 0

end

-- function to fill associative array with index values.

-- returns number of destinations

function createIndex(a)

 for i, v in ipairs(a) do

 a[v]=i+indexStart-1

 print(v," ", a[v])

 end

 return i

end

The last one translates picks up the index value for a specific destination, so you can use the name of

the destination. These three functions are very generic, and are stored in a file called “common.lua” This

also goes in the asset folder.

The function that does the real work is this one:

-- Function to set destination boards

function SetDestination(engine, provider,consist, destination)

 writeDebug(file,"Destination=".. destination)

 local assetpath=".\\"

 assetpath=".\\assets\\RudolfJan\\lua\\"

 local path= assetpath .. provider..consist.."Destinations.lua"

 writeDebug(file,"Destinations list file: ".. path)

 -- retrieve destinationlist

 -- verify file exists

 handle=io.open(path)

 if handle==nil then

 -- display error message and exit

 writeDebug(file,"Destinations list file not found:

".. path)

 return FALSE

 else

 writeDebug(file,"Destinations list file found: ".. path)

 io.close(handle)

 end

 dofile(path)

 count=createIndex(destinationList)

 if destinationList[destination] == nil then

 writeDebug(file,"Destination " .. destination .. " not found")

Scenario scripting guide

Version 0.2 alfa

62

 return FALSE

 end

 SetControl (engine, setDestinationCommand,

destinationList[destination]);

end

As you can see it does a number of checks, reads the destinations file and sets the correct control. The

control name in parameterised, increasing the chance to make it work for other providers.

In your script file, you need to include this code (example):

-- Scenario script to set destination boards

-- (C) 2014 Rudolf Heijink

-- Version 0.2 alfa

-- common lua scripting functions and constants

dofile(".\\assets\\RudolfJan\\lua\\common.lua")

function OnEvent (event)

 if (event == "start") then

 SetDestination("ChrisTrains", "SLT", "Rhenen")

 end

end

Note in common.lua also stuff like debug support is added.

11.4 AWS audible alert outside the cab view

Tested and it works.

--[[

AWS.lua

Object class for audible AWS alerts

(C) 2014 Rudolf Heijink, all rights reserved.

Requires common.lua

Required debug.lua

--]]

RJHAWS="0.1 alfa New"

mydebug:writeDebug("AWS script version " .. RJHAWS .. " loaded")

-- AWS alert states

AWS_INIT =0

AWS_OFF =1

AWS_ON =2 --AWS active

params=

 {

 "PlayerEngine",

 TRUE,

Scenario scripting guide

Version 0.2 alfa

63

 "buzzer.wav"

 }

DEBUG=true

Print("AWS script version " .. RJHAWS .. " loaded")

AWSControl = {} -- the table representing the class, which will double as the

metatable for the instances

AWSControl.__index = AWSControl -- failed table lookups on the instances should

fallback to the class table, to get methods

function AWSControl.new(consist, buzzer, buzzerfile)

 local self = setmetatable({}, AWSControl)

 Print("In AWS new")

 self.state=AWS_INIT

 self.Consist=consist or "PlayerEngine"

 self.Buzzer=buzzer or TRUE

 self.BuzzerFile= buzzerfile or ""

 self.ConditionName= "AWSAlert"

 self.AWSstate =0

 self.AlertReset=0

 self.AlertSound=0

 Print("AWS control created");

 return self

end

function AWSControl.BeginChecking(self,ConditionName)

 self.ConditionName= ConditionName or "AWSAlert"

 SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName);

 mydebug:writeDebug("AWSControl begin checking")

end

function AWSControl.StopChecking(self)

 SysCall ("ScenarioManager:EndConditionCheck", self.ConditionName);

 mydebug:writeDebug("AWScontrol stop checking")

end

function AWSControl.Check(self)

 AlertReset = SysCall(self.Consist .. ":GetControlValue", "AWSReset", 0) or -

1

 AlertSound = SysCall(self.Consist .. ":GetControlValue", "AWSWarnCount", 0)

or -1

 AWSState = SysCall(self.Consist .. ":GetControlValue", "AWS", 0) or -1

 local changed=false

 local buzz=false

 if AlertSound==1 and self.AlertSound==0 then

 buzz=true

 end

 if buzz then

 SysCall ("ScenarioManager:PlayDialogueSound",self.BuzzerFile);

 end

Scenario scripting guide

Version 0.2 alfa

64

 if AlertReset ~= self.AlertReset then

 self.AlertReset=AlertReset

 end

 if AlertSound ~= self.AlertSound then

 changed=true

 self.AlertSound=AlertSound

 end

 if AWSState ~= self.AWSState then

 changed=true

 self.AWSState=AWSState

 end

 if changed then

 Print("AWS status =" .. AWSState .. " AlertSound = " .. AlertSound .. "

AlertReset = " .. AlertReset)

 mydebug:writeDebug("AWS status =" .. AWSState .. " AlertSound = " ..

AlertSound .. " AlertReset = " .. AlertReset)

 changed=false

 end

 return CONDITION_NOT_YET_MET

end

--[[

 Scenarioscript for testing AWS and signalling alert functions

 (C) 2014 Rudolf Heijink

 Version 0.1 alfa

]]--

CONDITION_NOT_YET_MET = 0

CONDITION_SUCCEEDED = 1

CONDITION_FAILED = 2

scriptpath=".\\assets\\RudolfJan\\luadev\\"

dofile(scriptpath .. "debug.lua")

mydebug=DebugTS.new()

dofile(scriptpath .. "common.lua")

dofile(scriptpath .. "AWS.lua")

function OnEvent(event)

 if event =="start" then

 aws = AWSControl.new(unpack(params))

 aws:BeginChecking("AWSAlert")

 Print("AWS start event")

 return TRUE

 end

 return FALSE

end

function OnResume()

 Print("Calling OnResume")

 aws=AWSControl.new(unpack(params))

 aws:BeginChecking()

Scenario scripting guide

Version 0.2 alfa

65

end

function TestCondition (condition)

 if condition == aws.ConditionName then

 aws:Check()

 return CONDITION_NOT_YET_MET

 end

 return CONDITION_NOT_YET_MET

end

Things to do:

1. Make a difference between inside cab and outside cab. Does not work, because I cannot get

the current camera view.

Scenario scripting guide

Version 0.2 alfa

66

11.5 Overspeed detection

The overspeed detection sample is inspired by Thomas Ross, who used this for some scenarios for the

Western Lines of Scotland Route. However, it is completely rewritten to make it more generic and

flexible.

To understand the design, please look at figure … above.

A scenario starts in the state Nochecking. In this state you can set up the way the speed checking

works. You can apply following settings to customize the script:

Parameter Explanation

Limit Sets the speed limit in either km/h or Mph

Units Choose between the constants KMPH or MPH to use the correct units

Excess A factor that gives a tolerance. Limit is multiplied by Excess to get the speed

limit above which you are considered to be in overspeed

MaxWarnings The maximum number of warnings. It can be zero or higher. If after the last

warning the player is still speeding, an emergency stop will be issued.

Fail If true, Scenario will fail if after one emergency stop you are in overspeed

again, or if the penalty limit exceeds a predefined limit

MaxPenalty When in overspeed, the player builds up a penalty score wich is number of

seconds in overspeed times actual speed minus speedlimit. PenattyLimit

Scenario scripting guide

Version 0.2 alfa

67

defines how much penalty is allowed before a warning, emergency stop or

fail is issued. Sensible values may be somewhere in the range of 100-500

TotalMaxPenalty The total penalty allowed, if exceeded, the scenario fails.

FailMessage Text shown on scenario end in case it fails

SuccessMessage Text shown on scenario end for successful scenario

Buzzer Sound a buzzer for each overspeed event

BuzzerFile Sound file (.wav) to play as buzzer sound

You can define the parameters in an array:

params=

 {

 10, -- limit

 KMPH, -- units

 1.05, -- excess

 3, -- MaxWarnings

 TRUE, -- fail

 200, -- maxpenalty

 1000, -- total penalty allowed before fail

 "Failed. You failed to complete the scenario", -- fail message

 "Success. You completed the scenario succesfully" -- success message

 TRUE -- sound buzzer

 "buzzer.wav" -- buzzer file name

 }

This is a convenient way to add many parameters to a script.

You need to create a speedcontrol using the new function:

speedcontrol=Speedcontrol.new(self, table.unpack(params))

This creates a Speedcontrol object in lua named speedcontrol sets up the state Nochecking and

initialises the monitoring function.

If you want to use a buzzer, create a folder named “en” in your scenario folder. In this folder store

the .wav file containing your buzzer sound file.

To start checking overspeed, you need to call the function

speedcontrol:BeginChecking()

Now the state Checking is active.

If the current consist speed ,exceeds limit*excess, the state changes in Overspeeding.

During overspeeding, several things may happen:

1. If you decrease the speed enough, the state is changed back to Checking.

Scenario scripting guide

Version 0.2 alfa

68

2. If you build up MaxPenalty first warning messages will be displayed on screen, provided the

number of warnings is less than MaxWarnings

3. If MaxWarnings is reached, an emergency stop is issued. This deactivates all controls, so the

player experiences a real emergency stop.

4. If you have set the Fail parameter to true, on the next time you exceed maxPenalty, the

scenario fails.

So now let’s introduce the code:

The ScenarioScript.lu file is your basic interface to create new scripts using this function:

-- Sample script file for speed control function

-- (C)2014 Rudolf Heijink

-- version 0.1 alfa

-- load some script files

TRUE=1

CONDITION_NOT_YET_MET = 0

CONDITION_SUCCEEDED = 1

CONDITION_FAILED = 2

scriptpath=".\\assets\\RudolfJan\\lua\\"

dofile(scriptpath .. "debug.lua")

mydebug=DebugTS.new()

dofile(scriptpath .. "common.lua")

dofile(scriptpath .. "SpeedControl.lua")

-- You can supply all parameters here, by changing values with your own values

params=

 {

 10, -- limit

 KMPH, -- units

 1.05, -- excess

 3, -- MaxWarnings

 TRUE, -- fail

 200, -- maxpenalty

 1000, -- total penalty allowed before fail

 "Failed. You failed to complete the scenario", -- fail message

 "Success. You completed the scenario succesfully", -- success message

 TRUE, -- sound buzzer

 "buzzer.wav" -- buzzer file name

 }

function OnEvent(event)

 if event=="start" then

 speedcontrol=SpeedControl.new(unpack(params))

 speedcontrol:BeginChecking()

 return TRUE

 end --start

 if event==" stop" then

Scenario scripting guide

Version 0.2 alfa

69

 speedcontrol:StopChecking()

 return TRUE

 end

 if event==" end" then

 speedcontrol:EndGame()

 return TRUE

 end

 return FALSE

end -- OnEvent

function TestCondition (condition)

 if condition == speedcontrol.gConditionName then

 speedcontrol:Check()

 return CONDITION_NOT_YET_MET

 end

 return CONDITION_NOT_YET_MET

end

Steps:

Load all required script modules

1. Set up your parameters by editing the contents of the params array

2. Create the Speed Monitor object and start checking (here in the event handler for “start”)

3. Stop monitoring (for instance at the last event in your scenario), here in a separate stop event.

4. In the end event you evaluate the performance with respect to adhering to speed restrictions

and end the scenario

5. Finailly, you need to create a TestCondition function.

The good news is, you can do that without understanding all details of this fairly complicated script.

The script itself goes in the SpeedControl.lua file. For discussion< I split it up in the individual functions.

--[[

Speedcontrol.lua

Object class for overspeed check and penalties for TS2014

(C) 2014 Rudolf Heijink, all rights reserved.

Based on an idea of Thomas Ross but completely rewritten

Requires common.lua

Required debug.lua

--]]

RJHSpeedControlversion="0.1 alfa New"

mydebug:writeDebug("SpeedControl script version " .. RJHSpeedControlversion .. "

loaded")

KMPH=0

MPH=1

-- state values for speed control

NOCONTROL=0

CHECKING=1

OVERSPEED=2

Scenario scripting guide

Version 0.2 alfa

70

PENALTY=3

STOPPING=4

The first part of the script sets up debugging support and some constants.

Then you need to create a SpeedControl object. Objects are maintained in a special table. See

chapter E.3 for details).

SpeedControl = {} -- the table representing the class, which will double as the

metatable for the instances

SpeedControl.__index = SpeedControl -- failed table lookups on the instances should

fallback to the class table, to get methods

function SpeedControl.new(speedlimit, unit, excess, maxWarnings,canfail,

maxpenalty, totalmaxpenalty, failmessage, successmessage, buzzer, buzzerfile)

 local self = setmetatable({}, SpeedControl)

 self.SpeedLimitDisplay= speedlimit or 40

 self.Excess= excess or 1.05-- allowed percentage overspeed

 self.MaxWarnings=maxWarnings or 3

 self.unit= unit or KMPH

 mydebug:writeDebug("Units value=" .. self.unit)

 -- conversion factors of m/s to km/h or Mph

 if (self.unit== KMPH) then

 self.conversion= 3.6

 else

 self.conversion= 2.236932

 end

 self.gConditionName="SpeedCondition"

 self.SpeedLimit= self.SpeedLimitDisplay*self.Excess

 self.CurrentPenalty=0

 self.CurrentPenaltyLimit= maxpenalty or 200

 self.CanFail=canfail or TRUE

 self.Fail=FALSE

 self.TotalPenaltyLimit= totalmaxpenalty or 1000

 self.TotalPenalty=0

 self.PenaltyState=P_NOPENALTY

 self.PenaltyEnd=FALSE

 self.Warnings=0

 self.StartedSpeeding=0

 self.FailMessage= failmessage or "Scenario fails"

 self.SuccessMessage=successmessage or "Senario success"

 self.Buzzer= buzzer or FALSE

 self.BuzzerFile= buzzerfile or ""

 mydebug:writeDebug("Speedcontrol created")

 self.CurrentSpeed=0

 self.state=NOCONTROL

 return self

end

As you see, this function assures all variables are initialized properly. This function does not start the

actual monitoring.

function SpeedControl.BeginChecking(self,ConditionName)

 self.state=CHECKING

Scenario scripting guide

Version 0.2 alfa

71

 self.ConditionName= ConditionName or "SpeedCondition"

 SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName);

 mydebug:writeDebug("Speedcontrol begin checking")

end

 The function BeginChecking sets the initial checking state, and starts monitoring for the appropriate

condition.

The StopChecking function does the opposite:

function SpeedControl.StopChecking(self)

 self.state=NOCONTROL

 SysCall ("ScenarioManager:EndConditionCheck", self.ConditionName);

 mydebug:writeDebug("Speedcontrol stop checking")

end

The main function for overspeed checking is the Checking function:

function SpeedControl.Check(self)

 self.CurrentSpeed = SysCall("PlayerEngine:GetSpeed")

 self.CurrentSpeed=self.CurrentSpeed*self.conversion

 if self.state==CHECKING then

 if self.CurrentSpeed> self.SpeedLimit then

 self.state=OVERSPEED

 self.StartedSpeeding = Call("*:GetSimulationTime", 0)

 mydebug:writeDebug("Start overspeed " .. self.CurrentSpeed)

 end

 return

 end

 if self.state==OVERSPEED then

 self:Overspeed()

 end

 if self.state== PENALTY then

 self:Penalty()

 return

 end

 if self.state== STOPPING then

 self:EmergencyStop()

 return

 end

end

It will call more specialized functions in case overspeed is detected.

function SpeedControl.Overspeed(self)

 if self.CurrentSpeed> self.SpeedLimit then

 CurrentTime= Call("*:GetSimulationTime", 0)

Scenario scripting guide

Version 0.2 alfa

72

 self.CurrentPenalty=self.CurrentPenalty+(CurrentTime-

self.StartedSpeeding)*(self.CurrentSpeed-self.SpeedLimit)

 self.StartedSpeeding=CurrentTime

 if self.CurrentPenalty> self.CurrentPenaltyLimit then

 self.state=PENALTY

 mydebug:writeDebug("Start penalty " .. self.CurrentSpeed ..

"penalty value " .. self.CurrentPenalty)

 end

 else

 self.state=CHECKING

 self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty

 self.CurrentPenalty=0

 if self.Totalpenalty > self.TotalPenaltyLimit then

 self.Fail=TRUE

 self:EndGame()

 end

 mydebug:writeDebug("No longer overspeed")

 end

end

This function calculates the penalty increase, and end the game if the absolute limit is reached.

Otherwise it will set the state to Penalty, leaving it to the Penalty function to punish the driver:

function SpeedControl.Penalty(self)

 self.CurrentPenalty=0

 self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty

 if self.Fail==TRUE then

 self:EndGame()

 return

 end

 if self.MaxWarnings <=self.Warnings then

 self:EmergencyStop()

 self.Fail=TRUE

 return

 end

 if self.MaxWarnings >self.Warnings then

 self:Message()

 self.Warnings=self.Warnings+1

 return

 end

There are three penalties implemented: a warning message, a penalty stop and game end.

function SpeedControl.EndGame(self)

 mydebug:writeDebug("End game")

 if self.CanFail==TRUE then

 self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty

 if self.TotalPenalty > self.TotalPenaltyLimit then

 self.Fail=TRUE

 end

 if self.Fail== TRUE then

 mydebug:writeDebug("Fail game")

Scenario scripting guide

Version 0.2 alfa

73

 SysCall ("ScenarioManager:TriggerScenarioFailure",

self.FailMessage);

 else

 mydebug:writeDebug("End game, success")

 SysCall ("ScenarioManager:TriggerScenarioComplete",

self.SuccessMessage);

 end

 end

end

EndGame will first determine wetter the scenario is completed successfully. The designer has a lot of

control about this and can even decide that a scenario never fails due to overspeed.

The message function is straight forward:

function SpeedControl.Message(self)

 mydebug:writeDebug("Overspeed message, warning " .. self.Warnings)

 if(self.unit==KMPH) then

 unittext="km/h"

 else

 unittext= "Mph"

 end

 if self.Buzzer==TRUE then

 SysCall ("ScenarioManager:PlayDialogueSound",self.BuzzerFile);

 end

 SysCall("ScenarioManager:ShowAlertMessageExt", "Overspeed", "Exceeding

speed limit of " .. round(self.SpeedLimitDisplay) .. unittext .."\nActual speed is

" .. round(self.CurrentSpeed) .. unittext, 10, "")

 self.state=OVERSPEED

end

The penaltybreak disables the control and creates a full stop. Actually, this function maintains two

states: initiate a full stop and watch till the train actually stopped before releasing the controls again.

function SpeedControl.EmergencyStop(self)

 if self.state ==STOPPING then

 CurrentSpeed = SysCall("PlayerEngine:GetSpeed")

 CurrentSpeed=CurrentSpeed*self.conversion

 if (CurrentSpeed <1) then

 SysCall ("ScenarioManager:UnlockControls")

 self.state= CHECKING

 if self.CanFail==TRUE then

 self.Fail=TRUE

 end

 return

 end

 else

 mydebug:writeDebug("Emergency stop")

 SysCall("ScenarioManager:ShowAlertMessageExt", "Penalty

stop","Excessive overspeed.",10,"")

 SysCall ("PlayerEngine:SetControlValue", "Regulator", 0, 0.0);

 SysCall ("PlayerEngine:SetControlValue", "Reverser", 0, 0.0);

 SysCall ("PlayerEngine:SetControlValue", "TrainBrakeControl", 0, 1.0);

Scenario scripting guide

Version 0.2 alfa

74

 SysCall ("ScenarioManager:LockControls")

 self.state=STOPPING

 end

end

Things to do:

1. Save game state and resume from a saved game.

2. Localizations and better customization of the messages.

3. Maybe add new punishments

11.6 Thunder

Coming someday …

11.7 Emergency brake

This works. You probably will add code to disable controls for the user till the train actually stops.

 SysCall ("PlayerEngine:SetControlValue", "Regulator", 0, 0.0);

 SysCall ("PlayerEngine:SetControlValue", "Reverser", 0, 0.0);

 SysCall ("PlayerEngine:SetControlValue", "TrainBrakeControl", 0, 1.0);

11.8 Speed limit monitoring

The script in this chapter can be very useful for routes where speed restrictions do not appear in the

HUD. An example is the Albula line. It has speed signs, but these are very small and not always visible.

This scenario warns you both inside the cab and outside the cab in advance, so you can adjust your

speed.

The scenarioscript.lua is simple:

1. You need to create at least one event, that starts the monitoring. In this event you construct a

speed monitoring object. (See the appendix op object classes for more background). You must

specify four parameters:

a. The desired warning distance

b. The units km/h (KMPH) or MpH (MPH)

c. The direction to look for (FORWARD or BACKWARD)

d. A boolean (TRUE or FALSE) to indicate if you need an audible warning

2. If you want an audible warning, create a subfolder for each supported language and include

a .wav sound file. It is now hard coded buzzer.wav.

3. You need to create a condition check, that calls the SpeedMonitorg.Check() function (see

chapter 6.7 for the basics).

4. If you want to stop checking, create another event, calling SpeedMonitor:Finish()

Scenario scripting guide

Version 0.2 alfa

75

5. The OnResume() function makes sure monitoring is restarted if you continue a saved game. It

does not remember a complete game state, so you will get a warning for the next change right

away.

--[[

 Scenarioscript for RJH Long run scenario Albula line

 (C) 2014 Rudolf Heijink

 Version 0.1 alfa

]]--

 RUE=1

CONDITION_NOT_YET_MET = 0

CONDITION_SUCCEEDED = 1

CONDITION_FAILED = 2

scriptpath=".\\assets\\RudolfJan\\lua\\"

dofile(scriptpath .. "common.lua")

dofile(scriptpath .. "debug.lua")

mydebug=DebugTS.new()

dofile(scriptpath .. "SpeedMonitor.lua")

function OnEvent(event)

 if event=="start" then

 speedmonitor=SpeedMonitor.new(250, KMPH, FORWARD,TRUE)

 speedmonitor:Begin()

 return TRUE

 end

 return FALSE

end

function OnResume()

 speedmonitor=SpeedMonitor.ew(250, KMPH, FORWARD,TRUE)

 speedmonitor:Begin()

 mydebug.writeDebug("Resumed speed monitor")

end

function TestCondition (condition)

 if condition == speedmonitor.ConditionName then

 speedmonitor:Check()

 return CONDITION_NOT_YET_MET

 end

 return CONDITION_NOT_YET_MET

end

The actual script is in a class file SpeedMonitor.lua

There is a constructor to set up variables, which is straight forward. The interesting point is that you must

translate the m/s speed values to km/h or Mph values.

The Begin() function starts the actual monitoring

Scenario scripting guide

Version 0.2 alfa

76

The Check() function performs a check and displays the message. The warned state variable prevents

that messages are displayed continuously.

--[[

SpeedMonitor.lua

(C) 2014 Rudolf Heijink

Monitors next change in speedlimit and informs you with a display message

Requires:

 common.lua

 debug.lua

Sound recorded by Mike Koenig http://soundbible.com/1206-Door-Buzzer.html

]]--

RJHSpeedMonitorversion="0.1 alfa New"

mydebug:writeDebug("SpeedMonitor script version " .. RJHSpeedMonitorversion .. "

loaded")

-- Some constants

EndOfLine = 0

LimitNoSigh = 1

LimitSign = 2

NoChange= -1

NotInitialised= -2

KMPH=0

MPH=1

FORWARD = 0

BACKWARD = 1

SpeedMonitor = {} -- the table representing the class, which will double as the

metatable for the instances

SpeedMonitor.__index = SpeedMonitor -- failed table lookups on the instances should

fallback to the class table, to get methods

function SpeedMonitor.new(distance, unit, direction, buzzer)

 local self = setmetatable({}, SpeedMonitor)

 self.WarningDistance =distance or 500 -- warning distance

 self.Distance=10000 -- distance to next speed limit

 self.CurrentSpeedLimit= 0 -- current speed limit

 self.LimitType= NotInitialised -- type of next speed limit

 self.NextSpeedLimit= 1000 -- value of next speed limit

 self.Buzzer= buzzer or FALSE -- use a buzzer

 self.unit= unit or KMPH -- unit for speed limit

 if (self.unit== KMPH) then

 self.conversion= 3.6

 else

 self.conversion= 2.236932

 end

 self.Direction= direction or FORWARD

 mydebug:writeDebug("SpeedMonitor created")

 self.warned=FALSE

Scenario scripting guide

Version 0.2 alfa

77

 return self

end

function SpeedMonitor.Begin(self, ConditionName)

 self.ConditionName= ConditionName or "SpeedMonitor"

 SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName);

 limit=SysCall("PlayerEngine:GetCurrentSpeedLimit")

 self.CurrentSpeedLimit=round(limit*self.conversion) -- change m/s into km/h

or Mph

 mydebug:writeDebug("SpeedMonitor begin checking")

 return TRUE;

end

function SpeedMonitor.Check(self)

 self.LimitType,self.NextSpeedLimit,self.Distance=SysCall("PlayerEngine:GetNex

tSpeedLimit",self.Direction)

 self.NextSpeedLimit=round(self.NextSpeedLimit* self.conversion)

 self.Distance=round(self.Distance)

 if(self.WarningDistance> self.Distance and self.warned==FALSE) then

 if(self.unit==KMPH) then

 unittext="km/h"

 else

 unittext= "Mph"

 end

 if self.Buzzer==TRUE then

 SysCall ("ScenarioManager:PlayDialogueSound","buzzer.wav");

 end

 SysCall("ScenarioManager:ShowAlertMessageExt", "Speed monitor", "Speed

limit changes to " .. self.NextSpeedLimit .. unittext .."\nDistance " ..

self.Distance .. "m", 10, "")

 -- mydebug:writeDebug("Next speedlimit found " ..

self.NextSpeedLimit .. "warningdistaNCE=" .. self.WarningDistance .. "DISTANCE=" ..

self.Distance .. "warned=".. self.warned)

 self.warned=TRUE

 end

 if(self.warned==TRUE) then

 limit=SysCall("PlayerEngine:GetCurrentSpeedLimit")

 limit=limit*self.conversion -- change m/s into km/h or Mph

 if(limit ~= self.CurrentSpeedLimit) then

 self.CurrentSpeedLimit=limit

 self.warned=FALSE

 mydebug:writeDebug("speedlimit changed " ..

self.CurrentSpeedLimit)

 end

 end

end

function SpeedMonitor.Finish(self, condition)

 self.ConditionName= ConditionName or "SpeedMonitor"

 SysCall ("ScenarioManager:EndConditionCheck", condition);

end

Things to do:

Scenario scripting guide

Version 0.2 alfa

78

1. Test OnResume functionality

2. Support for miles for the warning distance

3. Small bug, at starting the script it creates a message twice

4. Make a difference between a higher speed limit and a more restrictive speed limit.

5. Make the warning distance depend of the difference between the current speed limit and the

next speed limit

6. Localization support

7. Name of the sound file not hard coded, safety check for the existence of the sound file

8. Add code to interrupt warning messages, instead of stopping the script class.

9. Combine the basic code with additional functionality like warning for signals and AWS handling

11.9 Monitoring closing the train doors

This script is quite straight forward if you studied the other examples. I called it Guard because the idea

is to do fancy things around the station stops. The start is easy, I want to check if the train doors are

open or closed. When the doors are closed after a station call, the driver is informed and the guard

blows the whistle.

The core piece of code is this function:

function Guard.Check(self)

 s1=SysCall(self.van .. ":GetControlValue","DoorsOpenCloseLeft",self.index) or

ERROR2

 s2=SysCall(self.van .. ":GetControlValue","DoorsOpenCloseRight",self.index)

or ERROR2

 mydebug:writeDebug("Doors state left=" .. s1 .." Right=".. s2)

 if (s1+s2==0) and (self.DoorsLeft+self.DoorsRight>0) then

 -- if s1+s2 = 0 then the doors are closed now, only perform action if

doors were open previously

 self.DoorsLeft=s1

 self.DoorsRight=s2

 self:ShowWarning()

 return

 end

 self.DoorsLeft=s1

 self.DoorsRight=s2

end

The statement

s1=SysCall(self.van .. ":GetControlValue","DoorsOpenCloseLeft",self.index) or

ERROR2

monitors the door state. 0 means door closed, 1 means door is open. I use here self.van as a parameter.

For EMU’s and DMU’s you can use PlayerEngine, but for coaches towed by an engine, you need to refer

to the vehicle number of the coach. This means that this control will only detect the door state of this

particular coach. For the sample I used a coach in the middle of the train. You may change the code

Scenario scripting guide

Version 0.2 alfa

79

to support an array of coach numbers (or even better retrieve this list using the API, I wish I knew how to

do this).

The rest of the code is straight forward, using the same techniques you see in other scripts, so I just

publish the code here:

--[[

Guard.lua

(C) 2014 Rudolf Heijink

Monitors open/close doors and lets the guard blow the whistle

Requires:

 common.lua

 debug.lua

]]--

RJHGuardversion="0.1 alfa New"

mydebug:writeDebug("Guard script version " .. RJHGuardversion .. " loaded")

-- Some constants

DOORS_OPEN=1

DOORS_CLOSED=0

ERROR= -100

ERROR2= -200

Guard = {} -- the table representing the class, which will double as the metatable

for the instances

Guard.__index = Guard -- failed table lookups on the instances should fallback to

the class table, to get methods

function Guard.new(van, whistle, buzzer)

 local self = setmetatable({}, Guard)

 self.Buzzer=buzzer or false

 self.whistle= whistle or ""

 self.van= van or "PlayerEngine"

 self.index=0 -- currently not used

self.DoorsLeft=SysCall(self.van ..":GetControlValue","DoorsOpenCloseLeft",self.inde

x) or ERROR

self.DoorsRight=SysCall(self.van ..":GetControlValue","DoorsOpenCloseRight",self.in

dex) or ERROR

 mydebug:writeDebug("Guard created")

 mydebug:writeDebug("Initial Doors state left=" .. self.DoorsLeft .."

Right=".. self.DoorsRight)

 return self

end

function Guard.Begin(self, ConditionName)

 self.ConditionName= ConditionName or "Guard"

Scenario scripting guide

Version 0.2 alfa

80

 SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName);

 mydebug:writeDebug("Guard begin checking van=" .. self.van)

 return TRUE;

end

function Guard.ShowWarning(self)

 if self.Buzzer then

 SysCall ("ScenarioManager:PlayDialogueSound",self.whistle);

 end

 SysCall("ScenarioManager:ShowAlertMessageExt", "Guard:", "Doors are

closed",10)

end

function Guard.Check(self)

 s1=SysCall(self.van .. ":GetControlValue","DoorsOpenCloseLeft",self.index) or

ERROR2

 s2=SysCall(self.van .. ":GetControlValue","DoorsOpenCloseRight",self.index)

or ERROR2

 mydebug:writeDebug("Doors state left=" .. s1 .." Right=".. s2)

 if (s1+s2==0) and (self.DoorsLeft+self.DoorsRight>0) then

 -- if s1+s2 = 0 then the doors are closed now, only perform action if

doors were open previously

 self.DoorsLeft=s1

 self.DoorsRight=s2

 self:ShowWarning()

 return

 end

 self.DoorsLeft=s1

 self.DoorsRight=s2

end

function Guard.Finish(self, condition)

 self.ConditionName= ConditionName or "Guard"

 SysCall ("ScenarioManager:EndConditionCheck", condition);

 mydebug:writeDebug("Guard stop checking")

end

And a usage example ScenarioScript.lua

--[[

 Scenarioscript for testing Guard functions

 (C) 2014 Rudolf Heijink

 Version 0.1 alfa

]]--

DEBUG=true

scriptpath=".\\assets\\RudolfJan\\luadev\\"

dofile(scriptpath .. "common.lua")

dofile(scriptpath .. "debug.lua")

mydebug=DebugTS.new()

dofile(scriptpath .. "Guard.lua")

Scenario scripting guide

Version 0.2 alfa

81

params={

 "22948520",

 "whistleconductorwhistle.wav",

 true

 }

function OnEvent(event)

 if event=="start" then

 guard=Guard.new(unpack(params))

 guard:Begin()

 return TRUE

 end

 return FALSE

end

function OnResume()

 mydebug=DebugTS.new()

 guard=Guard.new(unpack(params))

 guard:Begin()

 mydebug.writeDebug("Resumed guard")

end

function TestCondition (condition)

 if condition == guard.ConditionName then

 guard:Check()

 return CONDITION_NOT_YET_MET

 end

 return CONDITION_NOT_YET_MET

end

Scenario scripting guide

Version 0.2 alfa

82

A. Appendix Framework code

B. Appendix verified control functions overview

C. Appendix Unverified control functions

Following paragraphs show the names of default controls used. Please note, these can be customized.

You may want to look for files like Inputmapper to discover the control names to use. The list is not

complete. EngineStart and EngineStop may be of interest as well.

C.1 Train Controls

SimpleThrottle >> Speed Up / Slow Down

SimpleChangeDirection >> Switch Directions

Reverser >> Increase / Decrease Reverser

Regulator >> Increase / Decrease Throttle

CombinedThrottleBrake >> CombinedThrottleBrake?

GearLever >> Increase / Decrease Gear

TrainBrakeControl >> Increase / Decrease Train Brake

EngineBrakeControl >> Increase / Decrease Locomotive Brake

DynamicBrake >> Increase / Decrease Dynamic Brake

EmergencyBrake >> Emergency Brakes

HandBrake >> Handbrake

Horn >> Horn

Bell >> Bell

Wipers >> Wipers

Sander >> Sander

Headlights >> Headlights

AWS >> Automated Warning System control

AWSReset >> Automated Warning System Reset control

AWSClearCount >> Increase remented for every ramp than sounds a bell

AWSWarnCount >> Increase remented for every ramp than sounds a buzzer

Startup >> Engine Startup / Shutdown control

Wheelslip >> Wheelslip - used for visibility objects

DoorsOpenCloseLeft >> Open / Close Doors on left side

DoorsOpenCloseRight >> Open / Close Doors on right side

http://www.railsimdownloads.com/wiki/tiki-editpage.php?page=CombinedThrottleBrake

Scenario scripting guide

Version 0.2 alfa

83

C.2 Electric Locomotive Controls

PantographControl >> Raise / Lower Pantograph

0= down

1=up

Seems not working for all engines

FrontPantographControl >> Also set by PantographControl?

RearPantographControl >> Also set by PantographControl?

C.3 Steam Locomotive Related Controls

FireboxDoor >> Open / Close Firebox

ExhaustInjectorSteamOnOff >> On/Off Exhaust Injector Steam

ExhaustInjectorWater >> Increase /Decrease Exhaust Injector Water

LiveInjectorSteamOnOff >> On/Off Live Injector Steam

LiveInjectorWater >> Increase / Decrease Live Injector Water

Damper >> Increase / Decrease Damper

Blower >> Increase / Decrease Blower

Stoking >> Increase / Decrease Coal Shovelling

CylinderCock >> Open / Close Cylinder Cocks

SteamHeating >> Steam Heating

WaterScoopRaiseLower >> Raise / Lower Water Scoop

SmallCompressorOnOff >> On / Off Small Compressor

C.4 Output values for Dials*

General

Speedometer >> Speedometer

Ammeter >> Ammeter

RpmDial >> rpm

Accelerometer >> accelerometer (kN)

C.5 Steam

SteamChestPressureGauge >> Steam Chest Pressure Gauge

BoilerPressureGauge >> Boiler Pressure Gauge

SteamHeatingPressureGauge >> Steam Heating Pressure Gauge

http://www.railsimdownloads.com/wiki/tiki-editpage.php?page=PantographControl
http://www.railsimdownloads.com/wiki/tiki-editpage.php?page=PantographControl

Scenario scripting guide

Version 0.2 alfa

84

WaterGauge >> the water level in the boiler

SafetyValve >> safety valve state for audio / effects

Brakes

BrakePipePressure** >> Pressure in the brake pipe

VacuumBrakePipePressure** >> Pressure in the vacuum brake pipe

AirBrakePipePressure** >> Pressure in the air vacuum brake pipe

TrainBrakeCylinderPressure** >> Pressure in the train brake cylinder

LocoBrakeCylinderPressure** >> Pressure in the loco brake cylinder

MainReservoirPressure** >> Pressure in the main res

VacuumBrakeChamberPressure** >> Pressure in the vacuum brake cylinder

EqReservoirPressure** >> Pressure in the equalising reservoir

BrakeBailOff* >> Release loco brake when train brake set

**Add PSI or INCHES to the end of the name depending on the units desired.E.g.

BrakePipePressureINCHES

Output controls added for the sound system

Current >> Current in Amps

TractiveEffort >> Tractive Effort in Unkown Units

RPM >> RPM in rev's per minute Units

RPMDelta >> RPMDelta - lagged and processed RPM DELTA value

CompressorState >> CompressorState? On(1.0)/Off(0.0)

D. Start options for TS 201x

Source:

RWA Bob Artim and Peter Hayes

-allowJump ---- Allows jumping AI trains in scenarios

-blocking

-BlockingPhysics

-ConvertDistanceData

-DisableAWS

-DisableDump

-DisableEAX

-DisableSignals

-DisableSound

-DisplayLocMe

http://www.railsimdownloads.com/wiki/tiki-editpage.php?page=CompressorState

Scenario scripting guide

Version 0.2 alfa

85

-DontBakeDistances

-DontUseBlueprintCache

-DontUseBlueprintCache -- Possibly rebuilds blueprint .pak's each time???

-EnableAsyncKeys - ctrl-shift-1 through ctrl-shift-5 will at least speed up the

clock

-enable-backups

-EnableEAX

-EnableFullEditor

-enable-perforce

-EnableSound

-EnableSoundDebugDialogs

-EndTrackCheck

-FilterForDirectionality

-FilterForManualJcts

-FlashStrings

-followaitrain

-ForceSWMix (that one should disable anything more than basic playback

through your soundcard, if you're having problems)

-FPSLimit=xx xx = a value like 30

-fs -- Smaller fonts - narrative text and menus

-generateDetailLevels

-IgnoreCoupling

-ignoreTrackTypes

-Language

-LeipzigDemo

-LogLocStrings

-LogMate

-lua-debug-messages

-ManualCoupling

-NASKU

-NoClearType

-NoPlayerTrain

-NoSplashScreens -- Disable intro splash screens

-NoWagonBraking

-NoWagonBraking

-nvperfhud -- Create NVIDIA performance HUD (not confirmed)

-oogbb_noh ????

-QuickStartSteam

-relaunchmce

-ResetAchievements

-ResetStats

-SaveDistances

Scenario scripting guide

Version 0.2 alfa

86

-SetDefaultButtonSound

-SetFOV

-SetLogFilters

-Show3DPaths

-ShowAudioConsists

-ShowControlStateDialog -- Expanded HUD

-ShowDestinationMarkerList

-ShowDriverList -- Adds a 'Driver' button inside the Driver Properties window

(MK2?)

-ShowSoundDeviceSelector -- Allows choice of system sound device

-ShowTrackLinks

-SkipIntros

-TakeADump

-TrackPatternEntityFixup

-updateRVNumbers

-UseFastBlueprintCache

-UseFastStreamCache

-UseSoundDevice

-UseStreamCache

-ValidateNetwork

-ValidateSignals

-VerboseAudioDebug

E. Useful lua constructs

E.1 Case statement in lua

This version uses the function switch(table) to add a method case(table,caseVariable) to a table

passed to it.

function switch(t)

 t.case = function (self,x)

 local f=self[x] or self.default

 if f then

 if type(f)=="function" then

 f(x,self)

 else

 error("case "..tostring(x).." not a function")

 end

 end

 end

 return t

end

Usage:

a = switch {

Scenario scripting guide

Version 0.2 alfa

87

 [1] = function (x) print(x,10) end,

 [2] = function (x) print(x,20) end,

 default = function (x) print(x,0) end,

}

a:case(2) -- ie. call case 2

a:case(9)

E.2 Associative arrays

-- Support for associative arrays

-- function to iterate over a table and retieve its idex (i) and value (v)

-- Source: Programming Lua v5.2

local function iter (a, i)

 i = i + 1

 local v = a[i]

 if v then

 return i, v

 end

end

-- function that returns the next index, value pair of an associative array

-- Source: Programming Lua v5.2

function ipairs (a)

 return iter, a, 0

end

-- function to fill associative array with index values.

-- returns number of destinations

function createIndex(a)

 for i, v in ipairs(a) do

 a[v]=i+indexStart-1

 print(v," ", a[v])

 end

 return i

end

This code is used in the Destinationboards example

E.3 Object classes

In lua you simulate object classes. This is done using a metastable. In the example a class DegugTS is

created. You can create an instance by assigning the new function to a alua variable, e.g.

Debugger= DebugTS.new()

Scenario scripting guide

Version 0.2 alfa

88

The call for instance:

Debugger:writeDebug(“ text”)

Or

Debugger.writeDebug(self“ text”)

Note the subtle difference in using a dot (.) or colon (. The colon is syntactic sugar, then you don’t

need the self parameter.

DebugTS = {} -- the table representing the class, which will double as the

metatable for the instances

DebugTS.__index = DebugTS -- failed table lookups on the instances should fallback

to the class table, to get methods

function DebugTS.new(logfile,mode)

 local self = setmetatable({}, DebugTS)

 if logfile== nil then

 self.logfile="logfile.txt" -- file name

 else

 self.logfile=logfile

 end

 if mode==nil then

 self.mode="a+" -- open mode

 else

 self.mode=mode

 end

-- You can find this file in the TS home directory

 self.debugfile= io.open(self.logfile,self.mode) --file handler for debug file

 self.writeDebug(self,"Debug script version " .. RJHDebugversion .. " loaded")

 return self

end

-- write debug message

-- message is a string containing a text message

 function DebugTS:writeDebug(message)

 local dt= os.date("%d-%m-%Y/%X ")

 if(dt==nil) then

 dt=""

 end

 self.debugfile:write(dt .. message ..'\n')

 self.debugfile:flush()

 end

	Preface
	1 Introduction
	2 Getting started
	2.1 Knowledge prerequisites
	2.2 Lua version
	2.3 Tools
	2.4 Development environment
	2.5 Debugging
	2.5.1 Using logmate
	2.5.2 Speed up scenario play
	2.5.3 Print for debug
	2.5.4 An alternative logging system

	3 Organization
	3.1 Directory structure
	3.2 Accessing your script from inside TS2014
	3.3 Basic API call
	3.4 Include files

	4 Events
	4.1 The event loop
	4.2 Basic events
	4.3 Adding lua code to the trigger event
	4.4 Adding lua code to the other basic events

	5 Lua functionality for TS2014
	6 General scenario manager functions
	6.1 Object identification
	6.2 Game function calls
	6.3 Event handling
	6.4 Saving and resuming a scenario
	6.5 Locking controls
	6.6 Forcing scenario completion
	6.7 Condition checks

	7 Displaying messages
	7.1 Introduction
	7.2 Message types
	7.2.1 Simple message
	7.2.2 Alert message

	7.3 Info message
	7.4 HTML messages

	8 Camera control
	8.1 Consist camera functions
	8.2 The cinematic camera

	9 Engine functions
	9.1 Generics
	9.1.1 Call or SysCall?
	9.1.2 Set a control directly to a value.
	9.1.3 Toggle a control value between on and off
	9.1.4 Emulate a gradual increase/decrease of a control value

	9.2 Engine controls
	9.3 Track information
	9.4 Consist information
	9.5 Identification and information
	9.6 Speed
	9.7 Signalling interaction
	9.7.1 Signals
	9.7.2 AWS functions

	10 Other functions
	10.1 Time and season
	10.2 Whistle function
	10.3 Play video
	10.4 Play audio
	10.5 Weather events

	11 Scripting applications
	11.1 Logging your debugging messages
	11.2 Train length and train mass
	11.3 Destination boards for ChrisTrains models
	11.4 AWS audible alert outside the cab view
	11.5 Overspeed detection
	11.6 Thunder
	11.7 Emergency brake
	11.8 Speed limit monitoring
	11.9 Monitoring closing the train doors

	A. Appendix Framework code
	B. Appendix verified control functions overview
	C. Appendix Unverified control functions
	C.1 Train Controls
	C.2 Electric Locomotive Controls
	C.3 Steam Locomotive Related Controls
	C.4 Output values for Dials*
	C.5 Steam

	D. Start options for TS 201x
	E. Useful lua constructs
	E.1 Case statement in lua
	E.2 Associative arrays
	E.3 Object classes

