Scenario authors guide

Part Ill

Create LUA scripts for Trainsimulator 2015 scenarios

Rudolf Heijink

Version 1.0, June 2015

Scenario Authors Guide Part Il
Version 1.0

Copyright © 2014/2015 Rudolf Heijink.

@creative
commons

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

You are free to:

(] Share — copy and redistribute the material in any medium or format
o Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor endorses you or your use.

@ NonCommercial — You may not use the material for commercial purposes.

@ ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the
original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

Notices:

[You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable
exception or limitation.

(] No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as
publicity, privacy, or moral rights may limit how you use the material.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Scenario Authors Guide Part Il
Version 1.0

Preface

| proudly present the first final version of my scenario scripting guide. Il spent a lot of time collecting all
information needed with help from the community. It will be part of a Scenario Authors Guide. This guide will
consist of three parts:

Part |: Starters guide. Learn to create straight forward scenarios for your own use. | expect this part to be
available in September 2015.

Part Il: Advanced techniques for scenario creation. This covers a mix of topics, including publishing scenarios,
weather templates, quick drive scenarios etcetera. A first version will be available in December 2015.

Part lll: scenario scripting. Create your own LUA scripts.

| hope it will encourage you to start creating scripts and experiment with it. | also hope you are willing to share
your findings with the TS community.

Contact me at trainsimulator@hollandhiking.nl if you have additional information, corrections or comments.
This email address shall not be used for asking help. For that purpose, please use the community forums.

Engine driver

This guide contains some fairly advanced stuff. For some readers it may be hard to start using the guide. | agreed
with DTG to write some articles for the Trainsimulator community site Engine Driver (http://www.engine-
driver.com/). This may help you to get a more easy start in creating scenario scripts. | do not know when these
articles will be published. Possibly | will publish these tutorials elsewhere.

Images

Each chapter is introduced with a screenshot. They represent my favourite routes, rolling stock and developers.
It’s a mix between payware, donationware and freeware, often combined in a single picture and is meant as a
thank you to the TS2015 development community.

Acknowledgements

Tankski has started a google document that describes some of this information in more detail. It can be found
here: https://docs.google.com/document/d/19gn ... ring&pli=1
Richard Scott for the beautiful GWR Railcar on the front page.

Chris Longhurst for his research on playing sounds and the signalling functions. (And of course for his beautiful
Dutch train models!).

All members of the TS2015 community that somehow shared information that helps to create this guide,
whether they are aware of that or not.

Disclaimer

This guide is provided “as is” neither the author, nor Dovetail Games (DTG) or Railsimulator.com are liable for
the consequences of the use of this guide. The contents is the sole responsibility of the author. Comments are
welcome at trainsimulator@hollandhiking.nl.

Rudolf Heijink

mailto:trainsimulator@hollandhiking.nl
http://www.engine-driver.com/
http://www.engine-driver.com/
https://docs.google.com/document/d/19gnyrDe553WTy6AJqqLCkGyMfFwIFDnR9oeVGCflcdE/edit?usp=sharing&pli=1
mailto:trainsimulator@hollandhiking.nl

Scenario Authors Guide Part Il
Version 1.0

Contents
=] i Vol Ty 3
3 A C = 4T =8 - T o =T 8
1.1 [aTd oo [0 4 o Yo F USSR 8
1.2 Lo XNV [Te Fo Ll o T =T o [UL RS 8
1.2.1 LUA DASIC KNOWIEUZEvviieeeeieee ettt ettt et e e e et e e e e st e e e s ebteeeeeabtaeaesstaeeesstaeeesntaeeesnns 8
0 A L 1Y, TSROSO 9
1.2.3 TS2005 SCIIPTING coeeeieieieiiiii e 9
13 [UE Y= Y [o] o DTS PPPP S OPPRPP 10
1.4 Lo Lo £ SRS 10
1.5 [DT<] oYU =41V TSR 10
P O 1= 1 o 121 4o o N 11
2.1 (D[=Tl (o] AV A ¥ (o1 AU [o < IO TP PPPPSPPTRPPP 11
2.2 DeVelopMENT ENVIFONMENTcciiiie ittt e e ee e e e e e e e eab e e e e esabee e e ssabeeeessabeeeessnseeesennsenas 13
2.3 Accessing your script from inSide TS20L5 ...ccouviiiiiiiiieecciee ettt e e sree e e abee e e s sabee e s s sabeeeeenareeas 14
2.4 2 LY ol Y o I of- | PRSP 17
2.5 [T e T4 0 =1 o Tl PP UPP 17
2.6 (DT o T U= {1V PRSP 17
2.6.1 Debugging syntax errors in the Scenario Editor.......cccociviiiiiiiiii it 18
2.6.2 USING LOBMATE .. .uiiiiiiiiii ittt ettt e e e e s s sttt e e e e e s s s abt b eeeeesssasasnbaaaeeeessessssraaaaeeesssnnas 19
P ST Y o 1=T<To U o B ol T o =T o T o1 - PR 20
P M 410} B (o W Mo =4V - | (= TP PPPPPTN 20
D ST T N (o ={={T o T= V7 = o o SRR 21
2.7 Run Trainsimulator in WiNAOWS MOGE........uiiiiiiiiieecieeeee et ese et e e e bee e st eeaeeesaaeesbeeesnnee s 22
2.8 [=111 IR Yo T [SRS 24
N T 4 28
3.1 B TSV T 0 A Lo o F U URR 28
3.2 L2 Lol V=T o1 £SO TP PPPT S OPRTPP 29
33 Adding lua code 10 the trigEEr EVENT........ooi ittt e e e ta e e e e aba e e e eearaeeaean 30
3.4 Adding lua code to the 0ther BasiC EVENTS.........ccccviii i e et e e e eaaee e 30
3.5 Event handling for the [ast INStrUCTIONevii i e 32
4 Lua functionality fOr TS20L5......ccccciteuiereenierenncerenneeraseerensessnssesenseessnssssassessassssassessnsssssnsesssnsesennes 33
5 General scenario manager fUNCHIONScoiiirrieeiiiiiiiiiiiiir s s s s e e enanes 35
5.1 INIEIAIISATION 1ttt ettt e e sttt e st e s bbe e s be e e bt e e s i te e e ba e e et e e s bt e e nateesbaeesareenn 35
5.2 SaVviNg and reSUMING @ SCENATIO ..cuuviieiiiiieeeeiteeeeeiieeeeeitteeesstaeeeestaeeeesstaeeessssseeeesssseeeesssseeeenssseeeesssseeennn 35
5.3 DETEITEA EVENTS ... eiiiiiieriee ettt sttt e s et e sa bt e st e e s bte e s beeebbeesabaesabeeesabaesasaeenateesabaeesabeenn 36
5.4 (ool (] =4 o] 014 o] - JA USSP 36
5.5 Forcing scenario COMPIELIONeeiiiiiiee e e e e e e e e e e e e s b e e e e e e e e e e ennnreaneeeas 37
5.6 (6o T Te [1iTo] o 1ol T=T ol < PP PPROTPPPTIN 37
5.7 [Lo [o [T oI AT o PP PPPRT 38
6 DiSPlaying MESSAZES cuuuuiirrruuiiiiiruuiiiiirniiiiireniiiiiensiiiimemsiiiirensiitmensssistrssssssmmansssssresssssssssnsssssss 39

Scenario Authors Guide Part Il
Version 1.0

6.1 [aYd oY [¥To1 4 [o] o F SRR 39
6.2 Y100 o (N [T Y TSR 40
6.3 JAN [T o 0 (=TT =L TSRS 41
6.4 [0 o 0 =TT Y- Vo TSP 42
6.5 L Y0 g eI T L PPN 44
6.6 Keeping MesSages fOr |ater FEVIEW........coiciiii ittt et e e sre e e e erae e e s eaba e e e e eabae e e enareeas 49

2 0 14 0 T=1 = T el e T 01 1 4 o 1 N 51
7.1 (610 g L= = T Lot 61V =) f [0 o PSRN 51
7.2 Ji¥e \YZTaTol=To ot 0 aT=T o= 15 {0 1a Vot u o] o L3NS 53
7.3 The CINEMATIC CAMEBIA oot e e et e e et e e e e st e e e e abeeeeeaataeeeansbeeeeansaeesenseeeeennsenas 54
N WU oY T 1 T Vot T 4 TN 55
O ENGING CONIOIS ...ciieiiiiiiiiiiiiiiiiiieeii e ieeietenistaseteasistnsserensserenssstenssssssssssnssssnsssrenssssanssssnnsssans 58
9.1 GENIBIICS cuttttrereeruurerereeereeeesrererererersressresesssesssssssssssnsssssnsssssssssnsssssssnsssssssssnsnsnsnsnsnsnsnnnsnsnsnssnnsnsnsnnnnnnnnnnnnnnnnnn 58
9.2 (D] oleXV 7= g o = d oo T 14 o] I o =10 T=T-J USRS 59
9.3 Y a J oo alu o] R {o I V-1 [V =TSSP UUURRROt 61
9.4 Get the current value of @ CONTIOL.......uviiiiii e e e e e e e e e sbrre e e e e e e e e esannees 61
9.5 RESS A N le L Lo o] =)] USSR UUPRN 61
9.6 Lock or unlock @ SPECIfIC CONTIOL ..eiiieiiiei it e e e e e b e e e e s sabee e e enareeas 62
9.7 Get the minimum or maximum value of @ CONLIOl.........cooiviiiii i e 62
9.8 [T={T o[o] g o £ PRSP 62
9.9 200117 a Y= = USSR 63
10 O I I = Yol Q10 (o] s o= 1 T o ISP 64

1S 0 A 00 Yo 1 1] ol [0V fo] 2 1 = o ISP 65
1SN Y =Y =T [P 66
1N T T- o 1 T o = TN =T = Yot o o U RR 67
S T00 H Y -4 o = | LSSt 67

S 70 N1V A W1 Vot o o Ut 68

10 Other fUNCHIONS. ... ittt s s e re e e s ea e senesesenssssensssenssssensssensssnenssssensasenanans 69
10.1 TiME @NGA SEASON ..eeiuiiiiiiiieriiee ettt estee ettt e sibe e sttt e sabeesabeessbteesabeeessbeesateesabaeesabeesabeeeasbeesabaeesaseesasaesnsaeesseesnns 69
L0.2 AT ettt ettt sttt e b e e s bt e b bt e s a b e e s be e e s be e e bt e e ahbeesbaeenabeesbaeeanteesbeenan 70
0 T o - VA T o 1o T USRS 70
TR o - YA T =Y o TSRS 70
11 Scripting application @XamMPIES.......ccceiieeiieenieriererteniereenerreeterenseereaseerensesrasesssnsessnssesensesssnsessnnsens 72
I O R =1 0 =T =Y o Yol i o T =1 USSR 72
11.2 LOEEING YOUr dEDUGEING MESSAZES ..ueiiiiuiiieieiiieeeeiireeeeiireeeestreeeesteeeesastaeeesassaeeessssseesssssseeesasssneessssseeenns 72
11.3 Train [e@ngth and train MAsSueiicciiieiiiiiie ettt e e et e e e tr e e e e etaeeessataeeessssaeeessssaeeesasssaeesasseeeans 74
11.4 AWS audible alert outside the Cab VIEW......cccuuiiiiiiiie et e e s saaee e 75
R S @) V7= 5 o =T To e 11 =Y ot o o TP SUURN 78
O Y oY= T=To I [T o1 g 0o 11 o o ' =SS SURRNt 86
11.7 Monitoring closing the train dOOrS........ueiii i e e e e e e e b e e e e e e e e e enanrnnes 90
A. Appendix Control FUNCLIONS........cciiiieeiiiiiiiiiiiiiiiirrrr e s rresssssssssnssssssenssssssenns 94
Al LI LT e 2 4o SRR 94
A2 [F=Yot g Toll Mo Tolo] 0 Yo { V7T @] o o o -3 95
A3 Steam Locomotive Related CONIOISuviiiiii et e e e e e e e err e e e e e e e e ennnnnns 95
A4 OULPUL VAlUES TOF DIAIS ..eeiiiiiieeeeiiie ettt ettt e ettt e e e ettt e e e e bt e e e e ebbeeaeebseeeesstasaesasteeaesasraeansanes 95

Scenario Authors Guide Part Il
Version 1.0

A5 (O[04I =TT o ¢ NN 95
A.6 O TU Tl T | TSP STOTPRPN 96
A7 O T0T L g T Yol = | o T g 1T TU [PPSR 96
B. Useful lua CONSEIUCES....ccuiieeiiieiiirii et rreeeereeeesreenereaseereasesenssesensessnnsesenssssensesenssssensesennnenenn 97
B.1 (0 Y = 1< o U= oL ol o T (V- USSRt 97
B.2 F X o T - LAY I- 1 - |V T T T TP 97
B.3 (0] o T =Tot dfol - 1Y =TSSRt 98
T =) G P 100

List of figures

Figure 1. EXample SCENAIIO FOIUBNooi it e et e e et e e e et e e e e eab e e e e enbeeeeeenreeeeennrenas 12
Figure 2. Example assets folder structure for SCripting.o e e e e 13
Figure 3. Sample scripting files in the asset fOld@r ... e e 14
Figure 4. Open timetable view in the SCENArio @AItOriiiiciiiie e e e e 15
Figure 5. The left button opens the 1ua script dialog.cvveeeeciiiii i e 15
=V T MU= Yol T o] Ao [= oY= Yol =Y =T [P 16
Figure 7. Create GUIDS dialOg SCIEEN ..ccicuiiiie it e ettt ettt e et e e e st e e e e sbbe e e e s abaeeessbeeeesabeeeeensreeesssnseeas 17
Figure 8. Example showing syntax error in the scenario script dialog.ceeeviiiiiiiiiiiiie e, 18
Figure 9. Select Trainsimulator 2015 in the games list to access game OptioNns.cceeevvcveeeeiciiee e, 19
Figure 10. Select 1auNCh OptioNS NEIE c....uiiii i e s e e st e e e e s abe e e e s snbeeeeesnreeas 19

Figure 11.
Figure 12.
Figure 13.

Set launch options for debugging in LOGMAte.........ceviiiiiiiiiiiieecee e e e 20
Locate the SELHINGS MENUL. ..eciiiiie e e e e et e e s b e e e e s sbee e s esabeeeeenareeas 22
Select Graphics menu to set TS2015 to windowed MOde........coocciiiiiiciiiieeiiieee e 23

Figure 14. Set full screen option and adjust reSOIULION.coiciiiiiiiiiiie e e e e 23

Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Step 1. Place a consist in the sample SCENAMIOc..uiiiiiciiie e e e 24
Step 2. Add driver instructions and final destination.......cccccuueviiiiiiicciee e 24
Step 3. Add an event trigger to the trigger iNStrUCTION.cccvviii e 25
What your scenario folder must I00K HKe.uoieiiiiieeeeeee e e e 26
The "Hello world" SCript iN @CtiON........ciii ittt e et e e e e eabe e e e e eabe e e e eenbee e e e nneeas 27

Figure 20. HEllo WOrld in LOBIMIATE.ccccuiiiieeciiie ettt e ettt e e et e e e et e e e e ate e e s enbaeesannbeeaeenbeeaeennseneeennrenas 27

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

Trigger event dialog in tIMetable VIEWoouiiii ittt e et 30
Adding event triggers for success and failure SitUatioNns.........cc.eeeeeiiiiieciiiee e 31
Triggering an event irrespective of success or failure.cccocveei e 32
Scenario ends Not at the [ast INSTIUCTION.......ciicii i e e 32
Fix for problem with deferred event handling.c..ooooiiii i 32
Error sample of Message fUNCLION.cocuiiii ittt e e e e e ree e e e e e e e e e 40
SIMPIE MESSAZE EXAMPIE. 1oneiiiieiiiiiie ettt et e e e e e e tte e e e esateeeeeataeeeessaeeesassseeeeansseeesannseeeans 41
Simple alert MesSage EXAMIPIE ..cc..uiii it e et e e et e e e b e e e e eatae e e eanreeeean 41
AlErt MESSAZE EXAMPIE. ..eiiiiiiiiiie et e et e e et re e e e s bae e e esatteeeesabeeeeasteeeeenaseeeeensseeeeannseeas 42
INfOMESSAZEEXE EXAMPIE....iiiiiiiii ettt et e e e et e e e et e e e s st e e e esabae e e snbaeeeeeabaeesesnseeeeenasenas 44
Localization folder Structure for SCENAIIOSuiiiiirieirie ettt ettt et e sareesaree s 45
L NI I 0 [T - T P T P T TP PP U PP 46
Example Improved layout for html messages using table constructs.........ccceecveeieecieiecciiee e, 46
HTML code for improved [ayOUL..........coi it e e e ebae e e e bae e s s naae e e enareeas 47

file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563415
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563416
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563417
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563418
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563419
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563422
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563423
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563424
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563425
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563426
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563427
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563428
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563431
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563432
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563435
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563437
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563438
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563439
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563440
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563441

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Scenario Authors Guide Part Il
Version 1.0

By lua code generated html MESSABE. ...ccvuiiii ettt e eeree e s s sbee e e eareeas 47
The user can cycle through stored fUNCLIONS.coiiiiiiii i e 50
Force cab camera at 10ad tiME. ..o i e e e e naree s 53

[[=d a1 7= o A I ol e Yo Y i o o PRSPPI 55
You can use this property to set a name for a rail vehicle.coooviieiiiiii e, 59
List Of @ll CONTIOIS fOr @ CONSIST. ..viiiuiiiiiiiiiieeiiee ettt te e s sbe e e s be e sbaeesateesaeeesareeen 60
] o] 1ol o] | T g T= e - o SRR 64
State diagram for speed monitoring application.ceeiieiii e 78

file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563443
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563444
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563445
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563446
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563447
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563448
file://NAS1/media/Gebruikers/RudolfJan/Programmeren/Treinsimulator/Scenario%20Authors%20Guide%20part%20III/Scenario%20Authors%20Guide%20Part%20III%20%20v1.0.docx%23_Toc422563449

-

-

iy

1 Getting started

1.1 Introduction

Trainsimulator provides wonderful opportunities to create challenging scenarios. In course of time many new
features were added. TS2014 added to opportunity to use LUA scripts to create scenarios. Unfortunately
documentation was missing. Using examples, information at community sites and lots of trial and error, helped
me to create this guide. The good news is that DTG is helping me now to obtain the missing pieces and recently
a reference guide with respect to scripting has been added to the developer documents.

LUA is a programming language. In scripts you can use it even if you are not proficient in software development.
If you do not have programming experience, have look at the tutorials that will be published at Engine Driver.

You can do many things with scripting, but sometimes it’s just easier to use other functions in the TS2015
scenario editor and other content creation tools. In this first edition, focus will be on scripting. In later editions,
some other techniques will be explained as well.

1.2 Knowledge prerequisites

1.2.1 LUA basic knowledge

It will help you a lot if you have some basic knowledge before you start to attempt using this guide:

| assume you know how to create scenarios and that you can use the different scenario event types. If not, |
suggest you take some time to learn how to create scenarios. You can use the guides that are available in the
TS2015 Manuals folder or use one of the many community guides.

-8-

Scenario Authors Guide Part Il
Version 1.0

Some general knowledge on programming is helpful, e.g. Visual Basic, or programming languages like Pascal or
C. Make sure you know what is meant by following concepts:

e Variable
e [f..then.. else
° Function, procedure

e Syntax
e Object
e Array

Since LUA is used as a scripting language, knowing LUA may help as well.
A book to learn LUA (I recommend to buy this book and study it carefully)

http://www.lua.org/pil/

A few tutorial sites:
This one looks real good:

http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/

http://lua-users.org/wiki/TutorialDirectory

The tutorial is part of a large wiki, which provides many solutions and examples for common problems:

http://lua-users.org/

A LUA reference manual online:

http://www.lua.org/manual/5.1/

An unofficial FAQ:
http://www.luafag.org/

1.2.2 HTML

You may benefit from HTML knowledge. HTML is mark-up programming language for internet pages. One of the
many tutorials is this one:

http://www.htmldog.com/guides/html/beginner/

HTML is mainly used to make fancy dialogs, but you can include things like playing sounds, showing images etc.

1.2.3 TS2015 scripting

DTG just released some developer reference manuals. You can find the in the Railworks/Dev/Docs folder if
you have version 50.5a or newer. | recommend reading them all, especially the two guides on engine scripting
and scenario scripting. You should be aware that the current versions are not complete.

The manual on scripting suggests that you can use commands using a syntax like

ShowMessage (“Good”, “You just left the station”)
| tested this, and discovered it does not work (yet). Maybe it will come in near future.

http://www.lua.org/pil/
http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/
http://lua-users.org/wiki/TutorialDirectory
http://lua-users.org/
http://www.lua.org/manual/5.1/
http://www.luafaq.org/
http://www.htmldog.com/guides/html/beginner/

Scenario Authors Guide Part Il
Version 1.0

This guide contains some fairly advanced stuff. For some readers it may be hard to start using the guide. | agreed
with DTG to write some articles for the Trainsimulator community site Engine Driver (http://www.engine-
driver.com/). This may help you to get a more easy start in creating scenario scripts.

A scripting reference guide, but targeted to engine scripts and a bit signalling.

https://docs.google.com/document/d/19gnyrDe553WTy6AJqqLCkGyMTFwIFDnR9oeVGCflcdE/edit?pli=1#headin
g=h.gzuOmoigd5sc

The Railworks wiki contains a lot of information for content creation. There is no direct information about
scenario scripting, but it may be useful as a last resort:

http://railworkswiki.com/tiki-index.php

This blog may contain additional information or clarify topics covered in this guide:

http://trainsimlive.blogspot.co.uk/

1.3 Lua version

TS2015 uses lua version 5.02 You should be aware of this, because it is not the latest version of lua and
incompatibilities may occur if you installed a newer lua version on your computer

The statements

DEBUG=true
Print (_ VERSION)

will print the version of the LUA interpreter to LogMate (see also chapter 0).
1.4 Tools
You can use Notepad to edit LUA scripts, but it is much easier to use a programming editor like SciTE.

It is available at http://www.scintilla.org/SciTEDownload.html

You also may want to use Microsoft XML Notepad (http://www.microsoft.com/en-
us/download/details.aspx?id=7973), which helps you to view and edit XML files.

http://www.pspad.com/ is a general code editor, which can be used for HTML code. It can interface to your
browser, to get a preview of the edited code, but SciTE supports HTML as well.

It may be useful to have hex editor available, e.g.

http://mh-nexus.de/en/hxd/

If you want to edit or just look at the code in the compressed files, used in TS2015, RWTextEdit is an editor that
can open compressed files, edit them and store them again in compressed form.

http://www.ivimey.org/content/rwtextedit

1.5 Debugging

Debugging your script may be cumbersome. In chapter 2.6 you find information on debugging scenario scripts.

-10-

http://www.engine-driver.com/
http://www.engine-driver.com/
https://docs.google.com/document/d/19gnyrDe553WTy6AJqqLCkGyMfFwIFDnR9oeVGCflcdE/edit?pli=1#heading=h.gzu0moiqd5sc
https://docs.google.com/document/d/19gnyrDe553WTy6AJqqLCkGyMfFwIFDnR9oeVGCflcdE/edit?pli=1#heading=h.gzu0moiqd5sc
http://railworkswiki.com/tiki-index.php
http://trainsimlive.blogspot.co.uk/
http://www.scintilla.org/SciTEDownload.html
http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://www.pspad.com/
http://mh-nexus.de/en/hxd/
http://www.ivimey.org/content/rwtextedit

Scenario Authors Guide Part Il
Version 1.0

2 Organization

2.1 Directory structure

Your LUA scenario script must be called

ScenarioScript.lua

If you use media (e.g. sound files, html files or video files), create a directory in the scenario directory for the
languages you support, e.g. En for English. See the example in Figure 1.

In the example you see .png images. If these a language neutral, you just store them in the scenario directory. If
they are localised, store them in the language specific directory.

LUA is case sensitive, as are folder names. Chris Longhurst reports that he needed to use en as folder name (so
all lower case) for sound files. The localisation in TS2015 is not working properly. | recommend to use always
English language localisation next to other languages. If you use only German, texts will not be shown if the user
has English set as language and you do not provide English localisation.

-11-

Scenario Authors Guide Part Il

Maam Gewijzigd op Type ¥ Grootte
‘ . En 12-7-2013 &:58 Bestandsmap
. Scenery 2-7-2013 @58 Bestandsmap
@EheadGreen.png 2-7-2013 @58 PMNG-bestand 24 kB
@Eheadﬂed.png 2-7-2013 @58 PMNG-bestand 26 kB
IEI Z2headYellow.png 12-7-2013 &:58 PMNG-bestand 23 kB
Izl brake.png 12-7-2013 &:58 PMNG-bestand 20 kB
arfGroundSignal.png 2-7-2013 @58 PMNG-bestand 24 kB
Izl DynamicBrake.png 2-7-2013 @58 PMNG-bestand 49 kB
|| Initial5ave.bin 2-7-2013 &:58 BIM-bestand 9 kB
|| Initial5ave.bin.MD3 2-7-2013 &:58 MD5-bestand 1kB
Igl LocoBrake.png 2-7-2013 &:58 PNG-bestand 49 kB
Igl pointl.png 12-7-2013 &:58 PNG-bestand 19 kB
Izl point2.png 12-7-2013 6:58 PNG-bestand 6 kB
Izl FEVErSErphg 2-7-2013 @58 PNG-bestand 24 kB
|| Scenario.bin 2-7-2013 @58 BIM-bestand 371 kB
|| Scenario.bin.MD3 12-7-2013 &:58 MD5-bestand 1kB
Mj ScenaricProperties.xml 31-8-2013 14:45 AML-bestand 20 kB
|| ScenarioProperties.xml.MD3 31-8-2013 14:45 MD5-bestand 1kB
. ScenarioScript.lua 12-7-2013 &:58 Lua Script File 5kB
B ScenarioScript.luac 2-7-2013 £:58 Lua Compiled File 4 kB
|| Scenaric5cript.luac.MD3 2-7-2013 &58 MD3-bestand 1kE
gltaskList.png 2-7-2013 &58 PMG-bestand 14 kB
gl throttle.png 2-7-2013 &58 PMG-bestand 20 kB
gl TrainBrake.png 12-7-2013 658 PMG-bestand 49 kB

The execution directory for lua scripts is the Trainsimulator program content directory, normally:

C:\Program Files

Figure 1. Example scenario folder

(x86) \Steam\SteamApps\common\RailWorks\Content

Version 1.0

So, if you want to access files from other directories you need to take this into account. It is not a very good idea
to use hard paths to directories, so you either need to find a way to access the registry from lua or you need to

use relative paths.

Example, | use some common libraries in my assets folder, which can be accessed using the following path

string:

-12 -

Scenario Authors Guide Part Il
Version 1.0

.\assets\\RudolfJan\lua\common.lua

The . (dot) means the current directory. You also may use .. (two dots), meaning start in the parent directory.

You need to escape the backslashes if you use this in lua commands, e.g. in the dofile command, which
executes common . lua in this example:

dofile (".\\assets\\RudolfJan\\lua\\common.lua"™)

dofile is a lua library function, which is very useful.

NB If you intend to publish the script as a workshop scenario, you probably should put all scripting in the
ScenarioScript. lua file. | think the workshop upload function currently does not look for additional script
files. This is logical because the workshop system intends to keep things simple and does not know that you use
dofile constructs.

2.2 Development environment

One way to create scenario scripts is just create a separate independent script for each individual scenario. This
method has serious disadvantages for maintenance:

1. Copies of your script are cluttered over a number of locations, which are hard to find back, because all
file names are the same and you may have trouble finding the last version.
2. If you need to change anything in a certain script, you need to copy the changes in all scripts.

Therefore | use a way of working that avoids these problems. | created in my assets folder (Figure 2), called
luadev and lua. | use luadev to develop new scripts or to create new versions of scripts. When a script is
stable | just copy the files to the folder 1ua.

Azsets
4 Rudolflan

lua

luadey
Content
data

Figure 2. Example assets folder structure for scripting.

Most code goes in a script file that resides in the folder structure shown in Figure 3:

-13-

Scenario Authors Guide Part Il

Version 1.0
|| Blueprints.pak 12-11-2014 20:16 PAK-bestand
. SpeedControlMew.lua 28-9-2014 8:50 Lua Script File
. common.lua 27-9-2014 16:40 Lua Seript File
“_ SpeedMonitor.lua 31-8-2014 200 Lua Script File
. SpeedControl.lua 19-3-2014 22:08 Lua Seript File
_ debug.lua 15-2-2014 17:08 Lua Script File
*_ ChristrainsSGMDestinations.lua 10-8-2014 14:46 Lua Script File
“ ChristrainsMat64Destinations.lua 10-8-2014 11:30 Lua Seript File
"_ ChristrainsIRMDestinations.lua 10-2-2014 11:29 Lua Script File
“_ ChristrainslCMmDestinations.lua 10-8-2014 11:28 Lua Script File
" ChristrainsDDZDestinations.lua 10-8-2014 11:27 Lua Seript File
*_ ChristrainsDD-ARDestinations.lua 10-2-2014 11:26 Lua Script File
*_ ChristrainsSLTDestinations.lua 10-8-2014 11:25 Lua Script File

Figure 3. Sample scripting files in the asset folder

In the scenario folder, | create a script called ScenarioScript.lua as required by TS2015. | try to keep the
amount of code in this script to a minimum. Have look at the sample code in chapter 0.

Note:

You probably cannot use this if you intend to publish scripted scenarios in Steam Workshop, because Steam
Workshop cannot know you use this asset folder.

2.3 Accessing your script from inside 152015

You can access the LUA script from the scenario edit function in TS2015. You need to open the Timetable view
(2D editor view) see Figure 4,

-14 -

Scenario Authors Guide Part Il
Version 1.0

Figure 4. Open timetable view in the scenario editor

and you will see two buttons supporting scripting functions (see Figure 5):

Figure 5. The left button opens the lua script dialog.

The left button opens a view on the LUA script. The right button opens a string definition screen. If you click on
the LUA button, a pop-up screen appears as shown in Figure 6.

-15-

Scenario Authors Guide Part Il
Version 1.0

Moming Switching '

Open Folder Reload Compile/Generate MD5

Figure 6. Lua script dialog screen

You can use this screen to have a look at the LUA script. It does not show embedded files. Unfortunately most
scripts provided by DTG are compiled, so it is difficult to use them as examples for your own development.

Open Folder will open the scenario folder. If you have SciTE installed, you can now right click on the .lua file to
edit it.

You need to press Reload after editing a script outside TS2015. Reload is useful anyway, because it will report
syntax errors in your script. Before you can use the modified script, you need to compile it, using the
Compile/Generate MD5 button.

The Strings pop-up looks like Figure 7.

-16 -

Scenario Authors Guide Part Il
Version 1.0

Delate String Add String

Figure 7. Create GUIDs dialog screen

Adding a string creates u new GUID (Globally Unique IDentifier), to which you can add a string description. This
can be handy if you need a new GUID.

2.4 Basic APl call
The generic syntax for calling game functions from scenarios looks like:

SysCall (<command>, <paraml>,<param2> ,..)

<command> is the function to be used. In this guide most functions will be explained in due course. The “Hello
World” example gives you an idea (see chapter 2.8).

In scenario scripts you need to use the SysCall function, not the Call function that is used in engine scripts.

2.5 Performance

Each time you use SysCall causes a 0.04 ms delay. If you use condition checks 5.6, be aware that the functions
are called every frame. Suppose you want a frame rate of 30fps, this means that for each refresh 33ms is
available. So as a rule of thumb, try to use less than 10 API calls in all condition checks together. My general
onion is that LUA scripts perform quite will, so no need to worry very much about performance.

It helps to use a specific API call only once in a condition check and store results in local variables.

2.6 Debugging

The start of the debugging process is the Reload function in the TS2015 scenario editor. This will reveal syntax
errors. The advantage is that it is very fast. Also the compilation stage may reveal additional syntax errors.

-17 -

Scenario Authors Guide Part Il
Version 1.0

The default solution provided for debugging scripts is to use LogMate. LogMate is easy to use, but has one big
disadvantage. It may have a negative effect on game performance. for testing scripts it helps to use a simple
route (e.g. TestTrak, Seebergbahn or create your own testing route), otherwise you spend lots of time waiting
for the game to load.

LogMate is necessary to find hard programming bugs. In most cases it will report functions that do not exist or
variables with nil values. There is no easy other way to find these errors.

For errors in the programming logic, | created a simple logging system, which turns out to be much faster than
LogMate.

Also useful is the capability to watch the engine control parameters during gameplay. This is described in
chapter 9.2.

2.6.1 Debugging syntax errors in the Scenario Editor

If any syntax error occurs and you press “Reload” an error message will be displayed. It shows both the file name
and the line number and is very fast. It will not show more advanced compilation errors.

'3
,* . F478b1\Scenarios\e9393abd-5181-4a84-a26c-d6a1048adc3NScenarioScriptlua:29: “then' expected near
“schedulemonitor

Open Folder

Figure 8. Example showing syntax error in the scenario script dialog.

-18 -

Scenario Authors Guide Part Il
Version 1.0

STORE LIBRARY COMMUNITY RUDOLF JAN

GAMES

+
Train Simulator 2015

= Train Simulator 2015

Figure 9. Select Trainsimulator 2015 in the games list to access game options.

2.6.2 Using LogMate

You can use LogMate to display hard scripting errors. The lua “error” function will display in LogMate in the

“script manager” tab. LogMate will also show all output of Print statements, provided you have set the DEBUG
variable in your script to value true

NB true is not the same as TRUE!!! true is the LUA Boolean value, TRUE is used as a semi-boolean but has value
1in TS scripts.

Train Simulator 2015 - Properties

GENERAL UPDATES

v/| Enabl

SET LAUNCH OPTIONS...

CREATE DESKTOP SHORTCU

Figure 10. Select launch options here

-19-

Scenario Authors Guide Part Il
Version 1.0

To activate LogMate, you must use following steps:

Click in the games list with the right mouse button on Train Simulator 2015 (Figure 10).

A popup menu appears. Select the “Properties” entry. This opens a form (Figure 9).

Op the tab “General” click the button “SET LAUNCH OPTIONS ... “ A new form appears (Figure 11).
Type the following text in the edit field:

PwnNPE

-LogMate -SetLogFilters="Script Manager" -lua-debug-messages

Launch Opfions - Train Simulator 2015

ced users only.

-LogMate -SetlLogFilters="Script Manager” -lua-debug-messages

CAMCEL

Figure 11. Set launch options for debugging in LogMate

The option -1lua-debug-messages instructs LogMate to show the results of Print statements.

LogMate may have a significant negative effect on performance. You need LogMate only to find syntax errors in
LUA scripts. Once you removed all typing errors, you can switch off LogMate, just by closing the LogMate
Program. The performance problems disappear right away. The next time you start Train Simulator, LogMate
will start again

Note:

Use “Script Manager” as filter, not the “All” variant you usually see. Using the “All” filter reduces performance
significantly.

2.6.3 Speed up scenario play

When you add the option - EnableAsyncKeys to the launch options (as described in the previous paragraph)
you can speed up the time through pressing [etrl] + [shift] +[1] upto [5] (1 normal speed, 2 double, 5
is 5x speed).

It is recommended to play a scenario always at least once at normal speed, to make sure timing is correct. Also,
some scripts may not work properly when you try to speed up the scenario.

2.6.4 Print to LogMate

Since there is not a full blown source level debugger for LUA, you need to use some form of print statements to
monitor and debug script execution.

The LUA “Print” function will print the results in LogMate, but you must set the value for the variable DEBUG:

DEBUG=true

-20-

Scenario Authors Guide Part Il
Version 1.0

Print (“Debugging is switched on now”)

You must set the launch option -1lua-debug-messages to make this work. Note that this Print function is not
the same as the print function in the LUA standard library (upper case P not the lower case p).

| have long been confused, because is many scripts you see constants defined:

TRUE=1
FALSE=0

Setting DEBUG to these constants does not work!
Also, people advocate to use this:

-— No need for this!
Function DebugPrint (message)
If DEBUG then
Print (message)
end
end

There is no need to do so, Print is a debug print function. There is no reason to use this construct.

2.6.5 Alogging system

| designed a simple logging system, that allows you to write debugging information to a separate logfile, which
you can review after program execution.

Step 1: create a logfile. This file will be opened in append mode, so existing data will not be removed
automatically.

file=io.open("logfile.txt", "a+")

You can find your logfile in the TS2015 folder.
Step 2: define a function to write debug messages to a logfile:

—-—- file is a valid file handle
-—- message is a string containing a text message
function writeDebug(file, message)
dt= os.date ("$d-%$m-%Y/%X ")
if (dt==nil) then
dg=""
end
file:write(dt .. message ..'\n'")
file:flush ()
end

-21-

Scenario Authors Guide Part Il
Version 1.0

| did not include error handling code, because you cannot write an error message is debug printing fails ...
Normally you would handle the situation where file has value nil. As you see | include a timestamp for each
message.

Step 3: close the logfile when done (optional)

file:close ()

The logifile will be locked by TS, so you cannot delete it while TS is running, unless you close it explicitly in the
script.

You may want to use the print function to send data to logmate as well. In this example a debugging condition
must be met. In your script you can activate debugging by defining a variable

DEBUG = true
in your script. If DEBUG=0, nothing will be printed,

-- file is a valid file handle
-- message 1s a string containing a text message
function writeDebug(file, message)

if (DEBUG) then

end
end

Alternatively, you can send messages to your TS screen. In this case you do not need to create a file first, but you
cannot include a large number of debug statements.

function DebugPrint (message)
if (DEBUG) then
SysCall ("ScenarioManager:ShowAlertMessageExt", "Debug",
message, 10, TRUE)

End
End
This command will show a message in the upper right corner of the screen during 10 seconds and pause the
game.

2.7 Run Trainsimulator in windows mode
During development of scenario scripts, it may be convenient to run TS2015 in windowed mode.

1. You can watch LogMate while playing.
2. You can easy use a program to create screenshots of part of the game screen.
3. You need to run in windows mode to watch the engine parameterslist (see also chapter 9.2).

Figure 12. Locate the settings menu.

-22-

Scenario Authors Guide Part Il

To set TS2015 to windowsmode, use following steps:

PwNPE

In the TS2015 “Main” Menu select the Settings button (upper right on the screen, Figure 13)
Press the “Graphics” button (Figure 13).

Set “Full screen” settings to Windowed and reduce the screen resolution (Figure 14).
Restart TS2015

ics

-

Graph

Gameplay
Oy A
Audio
ey RS
Controls
o
Credits
F

Tools

../.: " ..?.zj';, ' -

Figure 13. Select Graphics menu to set TS2015 to windowed mode

&

Master Detail Level @_

.

TS Mode

Figure 14. Set full screen option and adjust resolution.

-23-

Version 1.0

Scenario Authors Guide Part Il
Version 1.0

2.8 Hello world

Courses for many programming languages start with the simple “Hello World” example. This example does
nothing more than display the text “Hello World”. To give you a start here a “Hello world” scenario script is
presented. The working example is published in Steam Workshop. It uses the TestTrak route and DTG Academy
rolling stock. So you can actually play with the example and view the code if you like.

The first step is to create a scenario. | used TestTrak as route for this purpose, but that is not important. You
need to place a consist as shown in Figure 15.

Figure 15. Step 1. Place a consist in the sample scenario

Srie MR PR

| Destination | Arrival Time | Departure time
Service i 12:00:00
start +00:00
Large Loop Gate 2 2:02: 12:02:47

Large Loop Gate 2 2:02: 12:02:47

Figure 16. Step 2. Add driver instructions and final destination
Then create some driver instructions and the final destination.

The important step is that you must add an event trigger called “start” to the trigger instruction, as shown in
Figure 17.

-24-

Scenario Authors Guide Part Il
Version 1.0

B BEEISTeNVENPERR
1

| Destination | Arrival Time | Departure time

——i— 12:00:00

+00:00

Figure 17. Step 3. Add an event trigger to the trigger instruction.

Now you can write your first script. The easy way to do this, is to open the script dialog and then select the
scenario folder (see also chapter 2.3) if you forgot how to do this). Use an editor to type the text below (I
recommend typing it yourself. You will learn a lot from that experience).

= 1[I
Hello world
Sample scenario script for Trainsimulator 2015

11--

TRUE=1
FALSE=0

DEBUG=true
Print ("\nLUA version 1is ".. _VERSION .. " Hello world")

function OnEvent (event)
if event=="start" then

-25-

Scenario Authors Guide Part Il

Version 1.0
SysCall ("ScenarioManager:ShowMessage", "Hello world")
return TRUE
end
return FALSE
end
1ol |nitialSave.bin 28-2-201513:35 BIM-bestand IkB
| Initial5ave.bin.MD3 23-2-201513:35 MD5-bestand 1 kB
%y Scenario.bin 28-2-201513:35 EIM-bestand 18 kB
|| Scenaric.bin.MD3 28-2-201513:35 MD5-bestand 1 kB
ij ScenarioProperties.xml 28-2-201513:35 AML-bestand 14 kB
|| 5cenaricProperties.xmlMD3 28-2-201513:35 MD3-bestand 1 kB
" ScenarioScript.lua 28-2-2015 180 Lua Script File 1 kB
" ScenarioScript.luac 28-2-201516:03 Lua Compiled File 1kB
|| ScenarioScript.luac.MD5 28-2-2015 16:03 MD5-bestand 1 kB

Figure 18. What your scenario folder must look like.

After saving the script, return to the scenario editor. Click on the “Reload” button in the script dialog. The click
on “Compile/Generate MD5“ and run the scenario.

-26 -

Scenario Authors Guide Part Il
Version 1.0

Hello world

Figure 19. The "Hello world" script in action.

In the sample | added a debug message. If you did set up LogMate properly, the LogMate screen will show the
print message (Figure 20). If both steps do not show any errors, start your scenario. It will show the screen in
Figure 19.

File Edit Window Help

Al RunTimeEmor | Content | Script Manager

Trace cScrptState.cpp : 167 = Unable to execute nonfunction: Initialise

Trace cScriptState.cpp : 167 = Unable to execute nonfunction: Intialise

Trace cScriptState.cpp : 167 = Unable to execute nonfunction: Intialise

Trace cScriptState.cpp © 167 = Unable to execute nonfunction: Intizlize

Trace cScriptState.cpp : 161 = Unable to execute non{unction: Initialise

Trace cScriptState.cpp : 161 = Unable to execute non{unction: Initialise

Trace cScriptState.cpp : 161 = Unable to execute non{unction: Initialise

Trace cScriptState.cpp : 161 = Unable to execute non{unction: Initialise

Trace cScriptState.cpp : 720 = |D: Editor'Gizmo\Scenano MarkersStandard Scenario Markerxml long: 6215443, lat: 51.115571 LUA version is Lua 5.0.2 Hello world
Trace cScrptState.cpp : 167 = Unable to execute nonfunction: Initialise

Trace cScriptState.cpp : 720 = |D: Editor'Gizmo\Scenario Markers.Standard Scenario Markerxml long: 6219443, Iat: 51.1155971 LUA version is Lua 5.0.2 Hello world
Trace cScriptState.cpp : 167 = Unable to execute nonfunction: Intialise

Trace cConsistManager.cpp : 2545 = INIT ResetAllSignal States

Trace cConsistManager.cpp : 2548 = INIT Initialise MearbySignals

Trace cConsistManager cpp : 2551 = INIT InitigliseJunctionsForSignals

Trace cConsistManager.cpp : 2554 = INIT Done

Figure 20. Hello world in LogMate.

-27 -

Scenario Authors Guide Part Ill
Version 1.0

3 Events

3.1 The event loop

Scenario scripts are small pieces of code that are executed if an event fires. A scenario script therefore always
needs to handle events.

An event is something that happens during your drive. For instance, a trigger instruction can be an event, but
also after loading passengers, or after a scheduled stop TS2015 will trigger an event, if you create one. Triggering
an event, just means that TS2015 will call the OnEvent (event) function, you created. The event parameter
passes to the name of the event that must be handled.

Your script code may look like this::

-- true/false
FALSE = 0
TRUE = 1

-— Fn OnEvent
== event - name of the event

—-- return - TRUE/FALSE if event handled

function OnEvent (event)

-28 -

Scenario Authors Guide Part Il
Version 1.0

if (event == "start") then
—-— code here
return TRUE - event handled
end
return FALSE —-event not handled
end

This function allows you to pick up events, and choose to handle them. In the code above an if statement is used
for each event. In the onEvent function, you include a similar structure for each event you want to handle.

Note

Event names are case sensitive, so Start denotes a separate event from start.

The function OnEvent may return either TRUE or FALSE

It is not clear to me which effect the return value has. It seems not yet fully implemented, but it is wise to follow
the basic rule to return TRUE if you can handle the event and FALSE if you don’t handle the event.

3.2 Basic events

Even without lua programming, some basic events can be set, You know them well:

a) The trigger event

b) The stop event

c) Theload event

d) The coupling event
e) The uncoupling event
f) The go via event

All but the Go via event allow to add additional triggers after the basic events have occurred.

-29-

Scenario Authors Guide Part Il
Version 1.0

3.3 Adding lua code to the trigger event
It is quite common to use a trigger instruction as an event.

8 stan +00:00

" X

O
0
[
[
=
0l
[
=
l
[
O

Figure 21. Trigger event dialog in timetable view
If you want to do so, create a trigger event using the “Timetable view” scenario editor (see also chapter 2.3) .

You just need to give the trigger event a name, as you see in the example above. In this case, the name start
is used. If you use the same event name in more than one trigger, each time the same event will be executed.

This is the trick that makes TS2015 call the OnEvent () function discussed in chapter 3.1
Note in the trigger instruction some events are predefined:

a) A wheelslip event
b) An emergency stop event
c) Anevent that displays a simple message box without title

The first two events can be activated by placing a checkmark, the third one is activated if you enter a text. The
text will NOT be shown if you add a trigger name to the event showing its own text.

3.4 Adding lua code to the other basic events

Following basic events support adding lua event handling in the same way, which is slightly different from the
rules in the trigger event :

-30-

Scenario Authors Guide Part Il
Version 1.0

a) The stop event

b) Theload event

¢) The coupling event
d) The uncoupling event

For these events TS2015 always executes the basic event first. You can add events the for two different results
of the basic event:

a) The eventis triggered in case the basic event failed
b) The event is triggered in case the basic event succeeded

Heiloo spoar 1

O]

@70 00:00:35

MO x¥o
LT |

Figure 22. Adding event triggers for success and failure situations

-31-

Scenario Authors Guide Part Il
Version 1.0

In the screenshot you can see where you can enter the event names.

The names used are samples. Any identifier is allowed. If you want to use the same event handling for both
success and failure, use the same name for the event in the instruction, e.g. like in figure Figure 23.

Figure 23. Triggering an event irrespective of success or failure.

3.5 Event handling for the last instruction

In the example in Figure 25. the scenario ends at another location than the location of the last instruction. In
this case, the execution of the event after picking up passengers at TestTrak Platform 1 is deferred till the final
destination is reached. This is consistent with the behaviour of the default event handling, which requires you to
include a success message in the last instruction and not in the final destination event.

You should be aware of this behaviour when you try using scripting functions. A simple solution is to add a “Stop
at” instruction at the final destination. This solves the problem. See Figure 24.

SAri e MR e PR =

| Destination | Arrival Time | Departure time
Servicel — 12:00:00
TestTraK Platform 1 2:00: 12:01:31
Large Loop Gate 2 2:03:: 12:03:37

ez e MR EE NP R

Dectination | Arrival Time | Departure time

Service ——i— 12:00:00
TestTrak Platform 1 12:00: 12:01:31
Large Loop Gate 2 2:03: 12:03:36
Large Loop Gate 2 2:03:: 12:03:36

Figure 25. Fix for problem with deferred event handling.

-32-

Scenario Authors Guide Part Ill
Version 1.0

4 Lua functionality for TS2015

In the previous chapters | provided the basics to get started. Now we will focus on the functionality TS2015
provides to scenario scripting.

The good news is that al lot of things are possible. The bad news is the lack of documentation for some aspects,
especially for the different control values . You will need a lot of trial and error, even for simple actions like
starting or stopping an engine.

The next chapters cover following topics:

a) General scenario manager functions
b) Displaying messages

c¢) Camera control

d) Tutorial functions

e) Engine functions

f) Other functions

Please, let me know if you discover new possibilities.
TS2015 distinguishes several different modules:

a) ScenarioManager
b) CameraManager
c) WindowsManager

-33-

Scenario Authors Guide Part Il
Version 1.0

d) WeatherController

For engines there does not appear to be an explicit management unit. You use specific commands to control an
engine. The generic syntax for calling game functions from scenarios looks like:

SysCall (<command>, <paraml>,<param2> ,..)

For engine and signal scripts, the API function Call () is used. In scenarios, always use SysCall(...) instead.

-34-

Scenario Authors Guide Part Il
Version 1.0

5 General scenario manager functions

5.1 Initialisation

This function works for scenarios, but is rarely used.

function Initialise ()

Function that is called once upon scenario initialization. Should be used to set up variables/simulation elements
of a script at the start of a scenario e.g. turning off/on lights. It is called before the signalling is set up properly.

| Note: mind the spelling it only works when spelled with “s”, Initialize () will NOT work.

5.2 Saving and resuming a scenario

The first step is initialization code.

function Initialise ()
HideFireworks () ;

end -- function Initialise ()

-35-

Scenario Authors Guide Part Il
Version 1.0

There is also an event handler that fires when you resume simulation after pausing the game:

function OnResume ()
HideFireworks () ;

end -- function OnResume ()

The example is from a Horse Shoe Curve scenario, using fireworks.

Unfortunately, there is no way to save your script status when you save your scenario. Technically it is possible
to save data, but there is no event defined you can use to run this code, though engine scripts listen to the
OnSave() function.

You ca try using deferred events to save status at regular intervals. | did not yet use this in scripting. When
resuming a scenario, you need to find out if you restarted the scenario or if you continued a scenario and also if
the simulation time is later than the saved data. | think it is possible, but a bit challenging to make it work

properly.

5.3 Deferred events

SysCall ("ScenarioManager:TriggerDeferredEvent", <event name>, <delay>);

This command allows you to trigger an event from inside a lua script. The second parameter is the <event
name>, the third parameter represents a delay in seconds. So the when you call this function an event will be
scheduled for later execution, like a delayed GOTO statement.

You can use this after an error condition occurred, for instance a speed limit violation. After this occurs you may
want to wait a while to allow the driver to slow down.

SysCall ("ScenarioManager:CancelDeferredEvent", <event name>) ;

will cancel an event you scheduled.
5.4 Locking controls
One thing you can do is lock all controls, forcing the driver just to watch:

SysCall ("ScenarioManager:LockControls") ;

Do not forget to unlock the controls later:

SysCall ("ScenarioManager:UnlockControls") ;

Note:

For engines there also is a function to lock/unlock an individual control see section 9.6).

-36-

Scenario Authors Guide Part Il
Version 1.0

5.5 Forcing scenario completion
Two functions that terminate a scenario. The first triggers a success, the second failure.

SysCall ("ScenarioManager:TriggerScenarioComplete", <message>);

<message> is a text to show if the condition in this function is met.
Triggers a scenario failure and displays an appropriate message:

SysCall ("ScenarioManager:TriggerScenarioFailure", <message>);

5.6 Condition checks

A function that checks at regular intervals for a specific condition, with a specific name.

SysCall ("ScenarioManager:BeginConditionCheck", <condition>);

<condition> is a unique identifier representation a condition.
You need to define a function that checks for this condition:

function TestCondition (<condition>)

Inside this function you evaluate the conditions. TestCondition is called at every frame, so it is resources
intensive. See chapter 2.5 for more information on performance.

which returns a status with respect to the condition:

CONDITION NOT YET MET = 0
CONDITION SUCCEEDED

CONDITION FAILED = 2

1

| think this may be useful if you want to stop checking for a condition, without doing this explicitly from an
event. | did not yet need or use this construct.

To stop the condition check, you need this call:

SysCall ("ScenarioManager:EndConditionCheck", <condition>);

A complete sample skeleton may look like this:
Step 1 uses following code:

if (event== “startMonitoring”) then
SysCall ("ScenarioManager:BeginConditionCheck", "MyCondition");
return TRUE

end

-37-

Scenario Authors Guide Part Il
Version 1.0

MyCondition is a name you can choose for the condition you like to monitor.
Step 2 requires a function that performs the monitoring:

function TestCondition (condition)
if (condition == "MyCondition") then
-- here goes your code on what to monitor
end
return CONDITION NOT YET MET
end

This allows you to use monitor that runs forever but also monitoring that will stop, depending on the condition,
e.g. you may want to wait till a specific time or till you meet an Al consist ...

Step 3 is to stop monitoring:

if (event== "stopMonitoring") then
SysCall ("ScenarioManager:EndConditionCheck", "MyCondition");
return TRUE

end

There also is a function to query the status of the test function. This function will NOT invoke the test, but just
return the last returned result of the test function.

SysCall ("ScenarioManager:GetConditionStatus", <condition>);

It will return one of

CONDITION NOT YET MET = 0
CONDITION SUCCEEDED = 1

CONDITION FAILED = 2

Note:

You should be aware that if the user saves the game and continues after restarting TS2015, state information of
a condition check may be lost. Unfortunately, there is no function in the interface like “OnSave” that allows you
to save the scripting state when you save the game.

5.7 Hidden events

Starting with TS2015 it is possible to hide instructions from the driver instructions list. There is a lua function,
that can make hidden instructions to show up:

SysCall ("ScenarioManager:UnhideDriverInstruction”, index)

The parameter index is the index of the instruction to show. | did not test the function yet, so it is not sure if
the index starts at 0 or 1. You should be aware that if you add any instructions, the index may change. This
makes the use a bit tricky.

-38-

Scenario Authors Guide Part Il
Version 1.0

6 Displaying messages

6.1 Introduction

TS2015 supports several different methods to display messages:

e Messages coupled to predefined events. These messages do not need any lua programming.

e You can add these simple messages as well by programming them in lua code and attach them to
events. | found three different functions to show messages, each with own features.

e You also can use message with HTML mark-up. This allows the use of images, tables, colours and other
fancy mark-up.

For programmed messages, lua will give you an error message if something is wrong, but unfortunately it does
not give any further details (see Figure 26).

In the next section four different message types will be discussed in more detail:

1. Simple messages, using the same simple layout and placement as the messages you can create without
programming in the events.

2. Alert messages which appear in the upper right corner and therefore are far less intrusive for the game

play.

Extended info messages which offer fine grained control in placement and behaviour

4. HTML messages with advanced mark-up features.

w

-39-

Scenario Authors Guide Part Il
Version 1.0

<Invalld arguments to ShowInfoMessageExt>

Figure 26. Error sample of message function.

6.2 Simple message

The easiest way to display a message is to use this command:

SysCall ("ScenarioManager:ShowMessage", title, message, type):;

It will display a message text at the centre of the screen. The title is optional. If you insert one text
parameter in the function call, only the message is shown, if you insert a title, the title is shown as well.

function OnEvent (event)

if event=="start" then
SysCall ("ScenarioManager:ShowMessage", "Simple message")
return TRUE

end

return FALSE

end

The result looks like this and appears in the middle of the screen. Game is not paused and the message is

displayed for a fixed quite long time.

-40 -

Scenario Authors Guide Part Il
Version 1.0

Simple message

Figure 27. Simple message example.

The parameter type allows to set the message type, choose from

INFO=0
ALERT=1

If you choose the ALERT version, a small message box in the upper right corner is shown.

Figure 28. Simple alert message example
6.3 Alert message
This command shows an alert message in the upper right corner of the screen.

SysCall ("ScenarioManager:ShowAlertMessageExt", header, text, duration,
event)

Example:

SysCall ("ScenarioManager:ShowAlertMessageExt", "Speed monitor", "Speed limit
changes to " .. self.NextSpeedLimit .. unittext .."\n distance "
self.Distance .. "m", 10)

-41 -

Scenario Authors Guide Part Il

Version 1.0
Results in this output:
Speed monitor
Speed limit changes to 15km/h
distance 423m
Figure 29. Alert message example.
Note: | used “\n” in this example to force a new line in the text.
You may add the name of an event to be triggered as the last parameter. (I did not try this).
6.4 Info message
The basic function to display messages has this syntax:
SysCall ("ScenarioManager:ShowInfoMessageExt", header, message, duration,
position, size, pause);
The message types discussed before, are in fact info messages, with preset parameters.
Parameter Description Comments
command Fixed value, see syntax
header Message header text
message Message body text
duration No of seconds the message is show, 0 means
until user clicks
position Place on the screen where the message will be
displayed
size Message size
pause If TRUE, pause the gameplay while you display Very useful, if you want to give a
the message. complex instruction to the user
while driving.
Note: do not use the boolean
values true or false. This results
in an invalid argument error
message!

-42 -

For position use following values:

Scenario Authors Guide Part Il

Version 1.0

Direction Value Description Comments
Vertical MSG_TOP Top position
Vertical MSG_VCENTRE Middle position between

top and bottom

Vertical MSG_BOTTOM Bottom position
Horizontal MSG_LEFT Left position
Horizontal MSG_CENTRE Middle position
Horizontal MSG_RIGHT Right position

You should always combine a horizontal and vertical position. The screens you see without using lua have the
position value MSG_CENTRE+MSG_VCENTRE, which places them in the middle of the screen. So lua allows you to

do something about this annoying practice.

Position can be a combination of values. RSC defined some macros, which | extended to a more complete set.

You need to define these values in your script:

-- Message positions
MSG_TOP = 1

MSG VCENTRE = 2
MSG_BOTTOM = 4
MSG_LEFT
MSG CENTRE = 1
MSG_RIGHT = 32

Il
I oo |l

6

Some useful combinations:

—-— useful combinations

MSG_TOPLEFT = 9
MSG_TOPRIGHT = 33

The other goody is that you can define three different sizes:

Size Value Description Comments
Small MSG_SMALL Small message box (like
alert message)
Regular MSG_REG Normal sized message box
Large MSG_LARGE Large sized message box

You need to define these values in your script:

-— Message box size
MSG SMALL = 0
MSG REG = 1
MSG LRG 2

-43 -

Scenario Authors Guide Part Il
Version 1.0

Example:

SysCall ("ScenarioManager:ShowInfoMessageExt", "Header", "Info message",
30, MSG TOPLEFT, MSG REG, TRUE);

Header

Info message

Figure 30. InfoMessageExt example

6.5 HTML messages

The command for HTML messages is very similar as the one for Info messages, but the meaning of the third and
fourth parameter is different:

SysCall ("ScenarioManager:ShowInfoMessageExt", GUID , html, duration,
position, size, pause);

The parameters must be filled as described in the table:

Parameter Description Comment
command As above, fixed
GUID AGUD | suggest you use the GUID that identifies the scenario.

Rumors say you must use the same GUID for all
messages in one scenario. | think this GUID allows the
html code to return properly
html Filename of html script See below for details, there some issues
duration Time In seconds the message
is shown, if zero, it is shown
till the user closes the
message

-44 -

Scenario Authors Guide Part Il

during message display

Version 1.0
position See previous chapter for
details, works the same way
size See previous chapter for
details, works the same way
pause If TRUE, the game pauses

You need to create an html file. Because localization is supported for html messages, you must create a
subdirectory, with the language abbreviation you want to support. | suggest you always create a directory
named “En” as a default language. Additionally, you can create directories for other languages, e.g “NL” for
Dutch. If you do not know which abbreviation to use, check the TS2014 manuals directory.

Note: the folder name may be case sensitive. Chris Longhurst reported this for playing sounds. | did not check

this thoroughly for HTML messages yet.

Sample folder structure:

. Scenery
. Ru
. En
. De
|| ScenaricProperties
|=] wycon
|=| whistle
|=] tunnel
|| snow
|=| Sig2

— a

Figure 31. Localization folder structure for scenarios

18-5-2014 14:54
18-5-2014 14:55
18-5-2014 14:55
18-5-2014 14:55
9-6-2014 19:18
18-5-2014 14:53
:

:

:

:

Bestandsmap
Bestandsmap
Bestandsmap
Bestandsmap
AML-bestand
PMG-bestand
PMG-bestand
PMG-bestand
PMG-bestand
PMG-bestand

R

65 kB
26 kB
34 kB
36 kB
33 kB
30 kB

-

You see here three language dependent folders with html scripts. The images, e.g. wycom.jpg are not language
dependent and therefore are stored in the scenario directory.

-45 -

Scenario Authors Guide Part Il
Version 1.0

That's better. This is an ES44AC, or
C45ACCTE if you use the Union Pacific
designation. | take it you know how to get
one of these started?

Don't dawdle. I've got places | need to be.
Put the reverser forwards, take off the
brakes and ease forward gently on the
throttle.

Figure 32. HTML message

NN c00d morning, Herr Heyder.
Your first duty is to pick up the BR294 on
track 16 and prepare the BR 101 on track
15 for a test run. But first get some fuel.

Figure 33. Example Improved layout for html messages using table constructs

The sample in Figure 32Figure 33 is not optimal, but it is easy to improve. In Figure 33 you see the top line of the
text is properly aligned with image. The html code is shown in Figure 34.

-46 -

Scenario Authors Guide Part Il
Version 1.0

The most important trick is to use tables to structure the images and texts. Line 4 opens a table, with a single
row (line 5). The row has two columns, one with the image (line 6-8) and a second one with the text (line 11-
16).

1 — <HTML >

2 - <BODY BGCOLOR="#0000007F">

3 - «<FONT COLOR="#FFFFFF" FACE="Arial" SIZE="4"»

4 - <TABLE>

5 - <TR valign="top"=

6 - <TD>

7 .
8 </ TD>

a - <TD width="2">
10 </ TD>
11 - <TD>
1z - |
13 . Good morning, Herr Heyder.

14 . vour first duty is to pick up the BR294 on track 16 and prepare the
15 .
16 </ TD>
17 </ TR>
18 </ TABLE>
19 < /FONT>

20 < /BODY>

21 < /HTML>

Figure 34. HTML code for improved layout.

One last example, showing more complex use of tables:

The destination Alkmaar is not a valid
destination for this consist. Use one of the
destinations from the list below. Take care
to use the exacet wording form the list.

Alkmaar Amsterdam

Groningen Utrecht Centraal

Zwolle

Figure 35. By lua code generated html message

And the html code used:

-47 -

Scenario Authors Guide Part Il
Version 1.0

<html>
<body bgcolor="#0000007F">
<table width="350">
<tr valign="top">
<td width="130">

</td>
<td width="2">
</td>
<td>

Invalid destination

</td>
</tr>
<table>
<table width="350">
<tr>
<td>

The destination

Alkmaar

is not a valid destination for this consist. Use one of the destinations
from the list below. Take care to use the <i>exact</i> wording form
the list.

<p></p>
</td>
</tr>
</table>

<table valign="top" width="350" border="1" bordercolor="#eeee00"
cellpadding="4">
<tr>

<tr>

<td>
Niet instappen
</td>

<td width="2"</td>

<td>

Extra trein
</td>
</tr>

<tr>
<td>

-48 -

Scenario Authors Guide Part Il
Version 1.0

Alkmaar
</td>
<td width="2"</td>

<td>
<omitted some lines here>

</table>

</body>
</html>

The html code for this sample is completely generated in a lua script.

Note:

A way to access the correct folder is to store both the route GUID and the scenario GUID in your script. This can
be done but it is not a very elegant method.

6.6 Keeping messages for later review

You may have noticed in the tutorials DTG provides for some locos that the messages containing instructions can
be reviewed later in the game. This can be achieved with this function call:

SysCall ("RegisterRecordedMessage", <Start function>, <Stop Function>,
immedately) ;

This function does several things:

1. It adds a function to a table with functions.
2. If Immediate is TRUE then execute the <Start function>

It creates a screen element that allows the user to browse through all registered messages

A reference to a function is saved, so in principle you can use this for other purposes than displaying messages,
though at the moment | cannot think of any useful application.

You also must provide a stop function <Stop function> as the third parameter, to enable the system to stop
executing a function.

If the last parameter, immediate is FALSE, nothing will happen, the function will be added to the table. An
example showing how it works:

function DisplayThrottle ()

SysCall ("ScenarioManager:ShowInfoMessageExt",
"7a2a0b99-678b-4142-a930-£0509a154deb", "controlsThrottle.html",

15, MSG LEFT + MSG TOP, MSG REG, TRUE);

SysCall ("WindowsManager:HighlightControl", "Regulator", 15.0, 0);
SysCall ("ScenarioManager:LookAtControl", "Regulator", 5.0, 4.0, 0.5);

end

-49 -

Scenario Authors Guide Part Il
Version 1.0

—-—functtion to cancel the displaying for the throttle
function StopDisplayThrottle ()

SysCall ("WindowsManager:StopHighlightControl", "Regulator");
end

function OnEvent (event)
if event == "throttle" then

SysCall ("RegisterRecordedMessage", "DisplayThrottle",
"StopDisplayThrottle", 1);
return TRUE;

end
return FALSE
end

Note that you first must create two functions, the first to start the action, the second to stop the action. You
probably can use other instructions than messages in the stored functions. You may use this to give the user a
bit more control over a sequence of actions. | did not yet try to use this.

Then, in the event handling function, you store and display the DisplayThrottle function, which shows an
html popup message and highlights the throttle control. StopDisplayThrotle stops highlighting the throttle
control in the HUD.

This function is heavily used in the tutorials, but you can use them in other scenarios as well.

o | [Ny
> 3 Ao

S+HQ oW\

Figure 36. The user can cycle through stored functions.

-50-

Scenario Authors Guide Part Il
Version 1.0

7 Camera control

TS2015 has a separate camera manager. | am aware of two different functions:

a) Controlling the Engine cameras from lua scripting. E.g. you may use it to force cab view.
b) To control the cinematic camera.

The cinematic camera is not covered in this version of the guide yet. It will come in a next edition.
7.1 Camera activation
The function to activate a camera is:

SysCall ("CameraManager:ActivateCamera", camera, duration);

If the duration parameter is set to a value >0, the camera view returns to the previous view after duration
seconds. You cannot use multiple ActivateCamera commands just one after the other to create a sequence. If
you want to do that, you must create an event chain, for instance by using deferred events (see chapter 5.3) to
control the sequence. The user can always overrule camera views. Maybe locking controls will prevent this.

-51-

Scenario Authors Guide Part Il

Version 1.0
Parameter Description Comment
command Fixed value
camera Camera name, see list below
duration Time in seconds during which this ~ Any value >0 will cause the
camera is active camera return to the previous

camera at the end of the time. A
value 0 will set the camera view
for an indefinite time

The cameras use these names:

Camera Lua name Keyboard mapping
Cab camera CabCamera 1

Frontview camera ExternalCamera 2

Left head out camera HeadOutCamera Shift+2

Track side camera TrackSideCamera 4

Passenger view CarriageCamera 5

Coupling view CouplingCamera 6

Yard camera YardCamera 7

Free camera FreeCamera 8

CinematicCamera

Following example can be used to force cabview:

SysCall ("CameraManager:ActivateCamera", "CabCamera", 0);

You can force cabview as well (and more easily) by setting the check mark in the scenario properties dialog:

-52-

Scenario Authors Guide Part Il
Version 1.0

Y

B [RuH Drive on time pt1/2

|E2""-.-'a 8 stopping semvice to Den

€
< |F'!"J':I off Hedink

2. Cloudy
Spring

Electric

Figure 37. Force cab camera at load time.

7.2 Advanced camera functions

The camera can be targeted to a specific object. A nice example is used in the tutorials. The control of interest
on the HUD is highlighted (see chapter 0 for details), the camera zoom into the control using this function:

SysCall ("ScenarioManager:LookAtControl", <Control name>,
lerpTime,duration, dstFov) ;

Parameter Description

lerpTime The time (in seconds) of how long the camera should take to focus on the control (i.e.
lerp to the control)

duration How long the camera should focus on the control

dstFov (degrees) the field of the view the camera will zoom to over lerpTime amount of time.

This function will lock the controls during lerpTime+duration seconds.

-53-

Scenario Authors Guide Part Il
Version 1.0

An example is provided in chapter 0.

In a similar way it is possible to create a scenery object. Like waggons and markers can get an in-game
identification, scenery objects like people can get one as well. You can direct the camera to a scenery object
using:

SysCall ("CameraManager:LookAt", <ObjName>);

You can use this function to focus on specific rail vehicles or at named scenery objects. Like you can add wagon
numbers to an engine or wagon in the scenario editor, you also can give a name to any scenery item.

To use LookAt for scenery items, you need to select the free camera first. For rail vehicles this is not necessary.
You can also revert to the default camera view (whatever that may be), using:

SysCall ("ScenarioManager:RestoreCameraToDefault", time);

The parameter time allows to specify the time in seconds it should take to go back to the desired position.

The following call relocates the free camera to a specific location. If result==true the operation succeeded.
(Not tested by me).

Result=SysCall ("CameraManager:JumpTo", longitude, latitude, height)

7.3 The cinematic camera

Coming in the next edition of this guide!

-54-

Scenario Authors Guide Part Il
Version 1.0

8 Tutorial functions

You may have wondered if it is possible to use the advanced functions in tutorials by yourself. The good news is
that this is possible. You have seen already the feature to browse through the tutorial messages in chapter 6.6.
In this chapter it is shown how you can create the red boxes around a control on the HUD and zoom into this
control.

Figure 38. Highlight a control.

-55-

Scenario Authors Guide Part Il
Version 1.0

The first step is to draw the red rectangle using this function:

SysCall ("WindowsManager:HighlightControl", <control>, <duration>, <style>);

In this call, <control> refers to the name of a control at the HUD. <duration> determines how long the
highlighting must be shown. The third parameter is not yet used. A usage example:

SysCall ("WindowsManager:HighlightControl", "Regulator", 15.0, 0);
You can programmatically overrule the highlight, e.g. if the user sets the control to a specific value, which would
mean the user has found the control.

SysCall ("WindowsManager:StopHighlightControl", <control>);

You can use then ScenarioManager to direct the camera to the control (see also chapter 7.2)

SysCall ("ScenarioManager:LookAtControl", "Regulator", 5.0, 4.0, 0.5);

And finally reset the camera view:

SysCall ("ScenarioManager:RestoreCameraToDefault", 5.0);

The HUD controls | found in various samples until now are listed below:

\ Description

Highlight name LookAtControl name

Regulator Regulator Regulator/Throttle
Reverser SimpleChangeDirection Reverser
TrainBrakeControl TrainBrakeControl Brake lever
TrainControl Loco brake
VirtualBrake ??

DynamicBrake

Dynamic brake

TaskLog TaskLog Task log button
LoadUnload Load/unload button
CamPreviousRV ??

CamNextRV ??

Speed Speed indicator on the

HUD

For the reverser | found an inconsistency in the example It is not yet clear why, maybe it’s used to distinguish for

the reverser of a steam engine, which works different.

-56 -

Scenario Authors Guide Part Il
Version 1.0

An example of the code is provided below:

function DisplayThrottle ()

SysCall ("ScenarioManager:ShowInfoMessageExt",
"7a2a0b99-678b-4142-a930-£f0509a154deb", "controlsThrottle.html",
15, MSG LEFT + MSG TOP, MSG REG, TRUE);

SysCall ("WindowsManager:HighlightControl", "Regulator", 15.0, 0);

SysCall ("ScenarioManager:LookAtControl", "Regulator", 5.0, 4.0, 0.5);
end

-—-function to cancel the displaying for the throttle
function StopDisplayThrottle ()

SysCall ("WindowsManager:StopHighlightControl", "Regulator");
end

-57 -

Scenario Authors Guide Part Il
Version 1.0

9 Engine conftrols

9.1 Generics

You can refer to an engine in two different ways:

The player engine is called “PlayerEngine” in scripts. Al engines can be referred to with a number, the consist
number you enter in the scenario editor.

SysCall ("PlayerEngine:SetControlValue", "Startup", 0, -1);
SysCall ("8510:SetControlvValue", “Startup”, 0, -1);

-58 -

Scenario Authors Guide Part Il
Version 1.0

8510 is the reference to the engine or van, as shows in the right hand fly out when selecting a consist (Figure
39).

bro409170409

Z [679409170409

Figure 39. You can use this property to set a name for a rail vehicle.

This makes engine commands work on both player engine and Al, but some commands are useful on coaches or
waggons as well.

9.2 Discovering control names

What can you do to find out which controls can be used?

One way to quickly see what controllers are on a specific locomotive is to run the game with a special command
line parameter -ShowControlStateDialog

This launch parameter will cause TS2015 to show a dialog with all controls for a particular engine or van,
including the actual value that is set. See chapter O for instructions to set a launch parameter. You need to run
TS2015 in windowed mode to see this dialog (see chapter 2.7).

-59-

Scenario Authors Guide Part Il
Version 1.0

Control List Dialog

Current vehicle: 19 of 19

Contral Name Contral Value

Haorn

HarnHigh

Wipers

CabviewWipers
WipersRear
CabviewWipersRear
Headlights

Sander

CabLlightSwitch
MeterLightSwitch
YardLightSwitch

AWS

AWSReset
AWSsClearCount
AWSWarnCount

RPM

RPMDelta
SpeedometerkPH
Ammeter
TrainBrakeCylinderPressureBAR.
MainReservoirPressureBAR
AirBrakePipePressureBAR
Current

TractiveEffort
CombinedTractionBraking
Wheelslip

ClockHaour

ClackMinute

Active

Compressorstate
CabAudioTick

oo 24 0 0 0 0 0000000000000 00000Q0oQoQaQ

Figure 40. List of all controls for a consist.

Unfortunately it is not possible to use copy/paste to retrieve the list. It can be very helpful both in creating
scripts and debugging, but there is no guarantee that the controls can be set from a scenario script.

You can also have look at the controls listed in appendix A. This list comes from the original wiki and there is a
fair chance this may help you.

As a last source, have a look in the asset folder of the engine. You may look for files with the extension . out.
These are compiled lua programs containing the engine simulation functions. | think it is possible to decompile
them and to obtain the code, but it will not be very readable. | never tried until now. But you can open the files
in a hex editor and look for readable strings that look like commands.

When you found them, use the lua calls in section 9.5 and section 9.7 to find out if the control is recognized and
to find the value range. This may work or it may not work.

It would be nice if you are willing to share the information you found with me for eternal fame and for the
community. | will publish it in the next version of this guide.

-60 -

Scenario Authors Guide Part Il
Version 1.0

9.3 Set a control to a value.

One method is to set them immediately to the desired value. You can do this with command:

SysCall ("PlayerEngine:SetControlValue", "<ControlValue>", index, value)
Method call to set the value of a control that has been specified in the engine blueprint of a locomotive.
Parameter <ControlValue> is the name of the control as it is in the engine blueprint, index is the index in

an array of controls that share the same name (should generally be 0) and value is the value to set the control
to.

For the asterisk you need to replace it with the engine/van/coach etc.

9.4 Getthe current value of a control

With the next call you can retrieve a current value.

SysCall ("PlayerEngine:GetControlValue", "<ControlValue>", index)

This function will retrieve the value of a control that has been specified in the engine blueprint of a locomotive.

Parameter <ControlValue> is the name of the control as it is in the engine blueprint and index is the index
in an array of controls that share the same name (should generally be 0).

SysCall ("PlayerEngine:ControlExists", "<ControlValue>", index)

This function will return 1 if a given control value exists in a blueprint or 0 if not. Parameter <ControlValue>
is the control value to check, as specified in the engine blueprint and index is the index in an array of controls
if there are multiple controls with the same name.

9.5 Testif a control exists
Useful function to check the existence for a control first.

—-— Function to set a named control to the correct value if the control

exists - used to keep code compact.
function SetControl (engine, name, value)
if SysCall(engine .. ":ControlExists", name, 0) ==TRUE then
SysCall (engine .. ":SetControlValue", name, 0, value)
writeDebug (file, "SetControl success for ".. name)

return true

else
writeDebug (file, "SetControl fails for ".. name)
return false

end

end

This function uses the logging system, see chapter 2.6.5 and the code listing in chapter 11.2

-61-

Scenario Authors Guide Part Il
Version 1.0

9.6 Lock or unlock a specific control

SysCall ("PlayerEngine:LockControl", "<ControlValue>", index, value)

Method that will lock a control in place so it cannot be changed in game. The parameter <ControlvValue> is
the control to be locked. index is the index of the control in an array of controls with the same name and
value is the value to determine whether the control is locked or not, with 1 being locked in place and 0 being
unlocked.

You may want to define symbols for this to increase readability, e.g.

LOCK=1
UNLOCK=0

You can use this function to check if a specific control is locked:

SysCall ("PlayerEngine:IsControlLocked", "<ControlValue>")

9.7 Getthe minimum or maximum value of a control

There are two system call that retrieve the minimum or maximum value for a control:

result=SysCall ("PlayerEngine:GetControlMinimum", "Startup", 0) or
"undefined"
result=SysCall ("PlayerEngine:GetControlMaximum", "Startup", 0) or
"undefined"

If the value is not available, the function will return nil. In the sample this is solved by adding a default value,
because if you want to display a string, lua does not accept nil values.

9.8 Engine controls

The big problem is the lack of documentation. Engine functions can be very specific for a model. This offers great
flexibility, but if the commands are not documented it can be hard to find out what can be used.

Some examples of my experience:

e PantographControl does not work right at the start of a scenario, but if you wait a while, you can use
it to lower the pantographs.

e Headlights works sometimes, but | could not switch off headlights for a German BR151.

e | managed to use DestinationBoards on all ChrisTrains models to set destinations, but for the latest
versions it doesn’t work properly anymore.

e |succeeded in using DoorsOpenCloseLeft and DoorsOpenCloseRight to get door status, The
function only works for the wagon you directly address, using the reference number of the van. You can
refer to the PlayerEngine, but the control does not exist for a separate locomotive if it does not have
its own passenger doors. The function did not work to set the door state. When | tried, it opened the
doors, but no sound and the doors closed again immediately.

e | succeeded in getting AWS state, but could not control the behaviour of AWS, e.g. set AWS works, but
you cannot use the Q button to clear it.

-62-

Scenario Authors Guide Part Il
Version 1.0

e | did not succeed in set Wipers on or off in the German BR151.

e The Startup command works on the vR Kof to turn the engine off, but | could not use the command to
set an initial state for the engine motor to be off, because the command causes the engine to perform
the complete animation to turn off the engine.

e | managed to activate the ATB (Dutch security system, like the German PZB but much easier to
understand) for the ChrisTrain models, using ATBEG or ATBNG as control name.

e |tis possible to set Throttle, Reverser and Trainbrake, e.g. to force an emergency stop:

SysCall ("PlayerEngine:SetControlValue", "Regulator", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "Reverser", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "TrainBrakeControl", 0,1.0);

This sample limits the cruise control for German loco’s (e.g. Munich-Augsburg, BR101 etc) to 40 km/h.

CurrentAFB = SysCall ("PlayerEngine:GetControlValue", "AFB", 0);
if (CurrentAFB > 0.15) then

SysCall ("PlayerEngine:SetControlValue", "AFB", 0, 0.15);
end

(I did not test this script).

9.9 Rolling start

If you just want to use scripting to set the initial state of player engine, e.g. create a dead engine with all
functions turned off, it can be much easier to use the Rolling Start feature. The rolling start feature is able to
store other engine parameters that just the speed as well. It does not always work, so you need to try and see
what works. Some people report it is not portable to other computers, but rolling start just creates another type
of save file for the scenario.

It works like this:

1. Create your scenario, tick the rolling start check box on the scenario properties dialog (Figure 41).
2. Start playing the scenario. When you have done all settings (eventually bringing the consist to the

desired speed), use CTRL+F2 to save the scenario. This invokes a special save mode for rolling start.
3. Play the scenario again to verify the settings.

Note:

If you edit your scenario, it is recommended to remove the files StartingSave.bin and StartingSave.bin.MD5
These files may corrupt your scenario if you add or remove events.

The rolling start seems not save all settings. You need to check if it works as you intended.

-63-

Scenario Authors Guide Part Il
Version 1.0

s

yoming Coal to Vancou

» Clear and the mounti

A

10.H azy

Winter

Diesel

Figure 41. Enable rolling start.

9.10 Track information
SysCall ("PlayerEngine:GetGradient")

Method that will return the grade of the track that the consist is currently on.

SysCall ("PlayerEngine:GetCurvature")

Method that will get the curvature of the track that the consist is currently on.

-64 -

Scenario Authors Guide Part Il
Version 1.0

SysCall ("PlayerEngine:GetCurvatureAhead", distance)

Method that will get the curvature of the track at a given distance in front of the consist. Parameter distance
is the distance ahead to look in metres. It is measured as the reciprocal of the radius of the curve (1/radius) such
that the curvature of a straight line is 0.

9.11 Consist information
SysCall ("PlayerEngine:GetConsistLength")

This function will return the length of the consist at that given point in time, in metres.

SysCall ("PlayerEngine:GetConsistTotalMass")

This function will get the total mass of the consist that the entity is in, inclusive of ballast/fuel. mass is measured
in tons.

See also the programming example in chapter 11.3

SysCall ("PlayerEngine:GetRVNumber")

Function will return the number of the rail vehicle (RV) that called the function. The number is the attribute that
can be set in the scenario editor. It returns the number of the first van/engine in a consist.

There is function to set the RV number as well:

SysCall ("PlayerEngine:SetRVNumber", value)

Not tested, but it can be very useful to set destination boards dynamically, and maybe as well to set correct
vehicle numbers using a script. | did not test this function yet.

SysCall ("PlayerEngine:GetTotalMass")

Method that will get the total mass of the rail vehicle, inclusive of ballast/fuel, measured in tons. Not sure if this
works for waggons as well.

SysCall ("PlayerEngine:GetFireboxMass")

This function will retrieve the mass of the firebox as a fraction of its maximum value.

SysCall (“PlayerEngine:GetConsistType")
Returns the consist type. This may be nice to add to a report for the driver. (Not tested)
It may return one of the following values:

eTrainTypeSpecial = 0

-65 -

Scenario Authors Guide Part Il
Version 1.0

eTrainTypelLightEngine = 1
eTrainTypeExpressPassenger = 2
eTrainTypeStoppingPassenger = 3
eTrainTypeHighSpeedFreight = 4
eTrainTypeExpressFreight = 5
eTrainTypeStandardFreight = 6
eTrainTypelLowSpeedFreight = 7
eTrainTypeOtherFreight = 8
eTrainTypeEmptyStock = 9
eTrainTypeInternational = 10

9.12 Speed

Thomas Ross uses them in a script for Western Lines of Scotland to monitor speed limits for steam engines.

SysCall ("PlayerEngine:GetSpeed")

This call will return the speed the player is undergoing at that specific point in time, measured in m/s.
You will need to perform a calculation to get the speed in km/h or Mph The correct factors are:
conversion= 3.6 to obtain km/h

conversion= 2.236932 to obtain Mph

SysCall ("PlayerEngine:GetCurrentSpeedLimit", separate)

Function will retrieve the speed limit of the section of track that the consist is currently on, measured in m/s.

If you set separate to value 1, it will return both track speed limit and signal speed limit e.g.

trackLimit, signallimit = SysCall ("PlayerEngine:GetCurrentSpeedLimit", 1)

type, speed, distance=SysCall ("PlayerEngine:GetNextSpeedLimit",
direction,mindistance, maxdistance)

This function will retrieve the next speed limit in a given direction within 10km of the entity in the consist.
Parameter direction is the direction to check, with 0 for forward and 1 for backwards. Returns 3 pieces of
data; type, speedand distance. type indicates the cause of restriction on the line, speed is the new
speed restriction, measured in m/s and distance is the distance in metres that are remaining until the new
speed limit. The values type can have:

e 0 -indicating end of line,

e 1 -indicating speed change but no linked trackside sign,
e 2 -indicating speed change with linked trackside sign,

e -1-indicating no change in speed over the next 10km.

If type has the value -1, then speed and distance will have value nil.

mindistance is the minimum distance to look ahead. This helps to find a speed limit hidden behind a near
speed limit.

maxdistance is the maximum distance to search for changes, default is 10km.

- 66 -

Scenario Authors Guide Part Il
Version 1.0

SysCall ("PlayerEngine:GetAcceleration")

Function will retrieve the acceleration the consist is undergoing at that specific point in time, measured in m/s2.

9.13 Signalling interaction
9.13.1 Signals

You can obtain signal states using following function:

type, state, distance, aspect=
SysCall (“PlayerEngine:GetNextRestrictiveSignal"Y, direction, distance,
lookfromdistance)

This function will gather information about the next signal. Parameter direction is the direction to look, with
0 for forward and 1 for backward.

distance is the distance in meters to the signal.

lookfromdistance is how far ahead of the player train to start looking. For example if you are sitting at a red
light, you can set lookfromdistance to 100 to tell the script to start looking for the next restrictive signal from
100m ahead of you - so you can look "through" the red light where you are stopped.

The function returns 4 values: type, state, distance and aspect.

type is representative of the values that follow it, and can be one of:
-1 - indicates there are no restrictive signals within 10km of the consist entity,
0 - indicates end of line (such that state and aspect can be ignored),

1 - indicates there is a restrictive signal on the line within 10km, and as such, state, distance and
aspect should be checked for more info.

state indicates the state of the signal in the signalling system; 0 is “clear”, 1 is “warning” and 2 is “stop”.
distance is the distance, in metres, until the signal has been reached.

aspect is the aspect set by the signal script (that is relative to “*Set2dMapProSignalState”). For UK
signals this can be:

0 - indicates signal is green,
1 - indicates signal is single yellow,
2 - indicates signal is double yellow,
3 - indicates signal is red,
10 - indicates signal is flashing single yellow,
11 - indicates signal is flashing double yellow.
Note that state and aspect shouldn’t be 0 as they indicate that the signal is not restrictive.

Let me know the proper values for other signalling systems if you discover them.

-67 -

Scenario Authors Guide Part Il
Version 1.0

9.13.2 AWS functions

There are three AWS functions that can be used:

AlertReset = SysCall ("PlayerEngine:GetControlValue", "AWSReset", 0)
AlertSound = SysCall ("PlayerEngine:GetControlValue", "AWSWarnCount", 0)
AWSState = SysCall ("PlayerEngine:GetControlValue", "AWS", 0)

AWSReset probably refers to the grace time for the driver to acknowledge an AWS alert.
AWSWarnSound has value 1 as long as the AWS alarm is on and not acknowledged.
AWS is the state of AWS, It’s value remains at 1 as long as alert status is needed.

You can read the value. An interesting application is to make AWS alerts outside the cab audible. See my script
application in chapter 11.4.

| also tried to create a driver alert function using this, but it does not work properly, you cannot use the Q
button to reset AWS if you activate it from a scenario.

-68 -

Scenario Authors G

uide Part Il
Version 1.0

10 Other functions

10.1 Time and season
It is possible to retrieve season and time of day.

local SecondsAfterMidnight= SysCall ("ScenarioManager:GetTimeOfDay")

local Season = SysCall ("ScenarioManager:GetSeason") -

Spring = 0, summer = 1, autumn/fall = 2, winter = 3

local timeNow = SysCall ("ScenarioManager:GetSimulationTime", O0)

Day and night times do not very accurately follow the day, but depend on the season. Night times are:

e Spring- 18:45 to 08:15.

e Summer-21:00 to 05:30.
e Fall- 19:45 to 06:45

e Winter-17:00 to 09:15.

-69 -

Scenario Authors Guide Part Il
Version 1.0

10.2 Weather

You can control weather sequences using LUA scripting using statements like:

SysCall ("WeatherController:SetCurrentWeatherEventChain", weatherId)

weatherId probably refers to a weather pattern blueprint. | have not yet tested this.
10.3 Play audio
You can play audio files in .wav or .dav format using LUA scripts with the function:

SysCall ("ScenarioManager:PlayDialogueSound",audiofilename) ;

It is possible to play multiple sounds simultaneously. The file is looked up relative to

Content/Routes/<route-uuid>/Scenarios/<scenario-uuid>/en/.

You can escape from that path using the appropriate number of "../" sequence at the beginning of the path.

For some reason underscore in the file name seem to result in the file being ignored. The file must be in the wav
format (that is not the encoded form that is used in other parts of TS2015).

Chris Longhurst says: “Seems it was the capitalisation it didn't like. | had a folder called "En". When | changed
that to "en" everything started working.”

SysCall ("ScenarioManager:StopDialogueSound",audiofilename) ;

will interrupt playing the sound file.
To know if a sound file is playing, use:

SysCall ("ScenarioManager:IsDialogueSoundPlaying",audiofilename) ;

Note:

Maybe you cannot use this function for workshop scenarios, because workshop may not upload the audio file

10.4 Play video

For video add the following command:

SysCall (“ScenarioManager:PlayVideoMessage"“, videoAddress, type, paused,
controls, style)

Parameter Description

videoAddress The file path to the video (DTG documentation says it must be .flv format, but .ogg
seems to work as well)

type FullScreen (0)
Front(1) large, at the centre of the screen

-70 -

Scenario Authors Guide Part Il

Version 1.0
VideoCall(2) small, upper left corner, useful to give instructions, e.g. a conductor
etc.
paused If TRUE pause the game (not sure, maybe the Boolean type must be used here)
controls e play1
e pause 2
o stop4
e seek8
You can use addition of the values to show more controls.
style Not yet used,
Example:
SysCall ("ScenarioManager:PlayVideoMessage","0001-0250.09g",0,1,0,0);

Ensure the ogg file is in the en folder.
You can stop playing the video:

SysCall (“ScenarioManager:StopVideoMessage", videoAddress)

Or query if the message is still playing:

SysCall (“ScenarioManager:IsVideoMessagePlaying"“, videoAddress)
(Not sure what happens if the player pauses the video)

Note:

Maybe you cannot use this function for workshop scenarios, because workshop may not upload the video file

-71-

Scenario Authors Guide Part Il
Version 1.0

11 Scripting application examples

11.1 Emergency brake

You probably will want to add code to disable controls for the user till the train actually stops.

SysCall ("PlayerEngine:SetControlValue", "Regulator", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "Reverser", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "TrainBrakeControl", 0, 1.0);

This code is straight forward. You can create a function to hide the details and make it more advanced, or just
copy the lines into a script.

11.2 Logging your debugging messages
See this site for a short tutorial on the object oriented techniques That are used in this example.

RJHDebugversion="0.1 alfa"

DebugTS = {} -- the table representing the class, which will double as the
metatable for the instances
DebugTS. index = DebugTS -- failed table lookups on the instances should

fallback to the class table, to get methods

-- syntax equivalent to "DebugTS.new = function..."

-72-

Scenario Authors Guide Part Il
Version 1.0

function DebugTS.new(logfile,mode)
local self = setmetatable({}, DebugTs)
if logfile== nil then
self.logfile="1logfile.txt" —-- file name
else
self.logfile=logfile
end
if mode==nil then
self.mode="a+" -- open mode
else
self.mode=mode
end
-— You can find this file in the TS home directory
self.debugfile= io.open(self.logfile,self.mode) --file handler for debug
file
self.writeDebug(self,"Debug script version " .. RJHDebugversion .. "
loaded")

return self
end

-—- write debug message
-- message is a string containing a text message

function DebugTS:writeDebug (message)
local dt= os.date ("$d-%m-%Y/%$X ")
if (dt==nil) then
dt=""
end
self.debugfile:write(dt .. message ..'\n')
self.debugfile:flush ()
end

Note: You can find your logfile in the TS folder. | store the script file with the name debug. 1ua in my assets
folder.

Usage in a ScenarioScript. lua file

scriptpath=".\\assets\\RudolfJan\\lua\\"
dofile (scriptpath .. "debug.lua")

function Initialise ()
mydebug=DebugTS.new ()
end —- Initialise

function OnEvent (event)
if event=="start" then
mydebug:writeDebug ("Wow, it works")
end --start
end --OnEvent

-73 -

Scenario Authors Guide Part Il
Version 1.0

11.3 Train length and train mass

This script will obtain your train length and mass and report it to the driver. In reality this should be a standard
procedure.

function GetTrainLength (consist)
result= SysCall (consist .. ':GetConsistLength')
if (result==nil) then
result= 0
end
return result
end

function GetConsistMass (consist)
result= SysCall (consist ..':GetConsistTotalMass')
if (result==nil) then
result= 0
end
return result
end

function GetConsistId(consist)
result= SysCall (consist .. ':GetRVNumber')
if (result==nil) then
result= 0
end
return result
end

function ReportConsistData (consist)
if (consist==nil) then
consist="PlayerEngine"
end

length= GetTrainLength (consist)
mass= GetConsistMass (consist)
id= GetConsistId(consist)

if (mass==0 or length==0) then
SysCall ("ScenarioManager:ShowInfoMessageExt", "Train report",
"Error, train report not available", 30, MSG TOP+MSG LEFT, MSG SMALL, TRUE);
else
message= string.format ("%$s%$s%s%d%$s%d%s ","Train number= ",id,"
Consist length= ",length," metres, consist mass = ",mass," tons")
SysCall ("ScenarioManager:ShowInfoMessageExt", "Train report",
message, 30, MSG TOP+MSG LEFT, MSG REG, TRUE);
end

end

Suggestions for improvement: create an html file on the fly and display a neat report.

-74 -

Scenario Authors Guide Part Il
Version 1.0

11.4 AWS audible alert outside the cab view

This script creates its own AWS alert sound. Useful for engines without audible signal, or for using camera
positions outside the cab.

= [

AWS. lua

Object class for audible AWS alerts

(C) 2014 Rudolf Heijink, all rights reserved.
Requires common.lua

Required debug.lua

-=11

RJHAWS="0.1 alfa New"
mydebug:writeDebug ("AWS script version " .. RJHAWS .. " loaded")

-— AWS alert states

AWS INIT =0

AWS OFF =1

AWS ON =2 --AWS active

params=
{
"PlayerEngine",
TRUE,
"buzzer.wav"

}

DEBUG=true

Print ("AWS script version " .. RJHAWS .. " loaded")

AWSControl = {} -- the table representing the class, which will double as
the metatable for the instances

AWSControl. index = AWSControl -- failed table lookups on the instances

should fallback to the class table, to get methods

function AWSControl.new (consist, buzzer, buzzerfile)
local self = setmetatable({}, AWSControl)
Print ("In AWS new")
self.state=AWS INIT
self.Consist=consist or "PlayerEngine"
self.Buzzer=buzzer or TRUE
self.BuzzerFile= buzzerfile or ""
self.ConditionName= "AWSAlert"
self.AWSstate =0
self.AlertReset=0
self.AlertSound=0
Print ("AWS control created"):;

-75 -

Scenario Authors Guide Part Il
Version 1.0

return self
end

function AWSControl.BeginChecking (self,ConditionName)
self.ConditionName= ConditionName or "AWSAlert"
SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName) ;
mydebug:writeDebug ("AWSControl begin checking")

end

function AWSControl.StopChecking (self)
SysCall ("ScenarioManager:EndConditionCheck", self.ConditionName) ;

mydebug:writeDebug ("AWScontrol stop checking"™)
end

function AWSControl.Check (self)

AlertReset = SysCall (self.Consist .. ":GetControlValue", "AWSReset",
0) or -1

AlertSound = SysCall (self.Consist .. ":GetControlValue",
"AWSWarnCount", 0) or -1

AWSState SysCall (self.Consist .. ":GetControlValue", "AWS", 0) or -

1
local changed=false
local buzz=false

if AlertSound==1 and self.AlertSound==0 then
buzz=true
end
if buzz then
SysCall ("ScenarioManager:PlayDialogueSound",self.BuzzerFile);
end
if AlertReset ~= self.AlertReset then
self.AlertReset=AlertReset
end
if AlertSound ~= self.AlertSound then
changed=true
self.AlertSound=AlertSound
end
if AWSState ~= self.AWSState then
changed=true
self.AWSState=AWSState
end
if changed then
Print ("AWS status =" .. AWSState .. " AlertSound = "
AlertSound .. " AlertReset = " .. AlertReset)
mydebug:writeDebug ("AWS status =" .. AWSState .. " AlertSound =
" .. AlertSound .. " AlertReset = " .. AlertReset)
changed=false
end

-76 -

Scenario Authors Guide Part Il
Version 1.0

return CONDITION NOT YET MET
end

-=[I

Scenarioscript for testing AWS and signalling alert functions
(C) 2014 Rudolf Heijink

Version 0.1 alfa

11--

CONDITION NOT YET MET = 0
CONDITION SUCCEEDED

CONDITION FAILED = 2

1

scriptpath=".\\assets\\RudolfJan\\luadev\\"

dofile(scriptpath .. "debug.lua")
mydebug=DebugTS.new ()

dofile(scriptpath .. "common.lua")
dofile(scriptpath .. "AWS.lua")

function OnEvent (event)
if event =="start" then
aws = AWSControl .new (unpack (params))
aws :BeginChecking ("AWSAlert")
Print ("AWS start event")
return TRUE
end
return FALSE
end

function OnResume ()
Print ("Calling OnResume")
aws=AWSControl.new (unpack (params))
aws :BeginChecking ()

end

function TestCondition (condition)
if condition == aws.ConditionName then
aws :Check ()
return CONDITION NOT YET MET

end

return CONDITION NOT YET MET
end
Things to do:

-77 -

Scenario Authors Guide Part Ill
Version 1.0

1. Make a difference between inside cab and outside cab. Until now | am not able to find out which is the
actual camera view.

11.5 Overspeed detection

The overspeed detection sample is inspired by Thomas Ross, who used this for some scenarios for the Western
Lines of Scotland Route. However, it is completely rewritten to make it more generic and flexible.

Scenario normal end

End
checking

Begin checking

fScenario normal e

Speed > max Speed < max Speed<0.1
Show message

Scenario fail

Warn count exceeded

Message shown

Figure 42. State diagram for speed monitoring application.

To understand the design, please look at the state diagram in Figure 42.

A scenario starts in the state Nochecking. In this state you can set up the way the speed checking works. You can
apply following settings to customize the script:

Parameter Explanation
Limit Sets the speed limit in either km/h or Mph
Units Choose between the constants KMPH or MPH to use the correct units

-78 -

Scenario Authors Guide Part Il

Version 1.0
Excess A factor that gives a tolerance. Limit is multiplied by Excess to get the speed limit
above which you are considered to be in overspeed
MaxWarnings The maximum number of warnings. It can be zero or higher. If after the last
warning the player is still speeding, an emergency stop will be issued.
Fail If true, Scenario will fail if after one emergency stop you are in overspeed again, or
if the penalty limit exceeds a predefined limit
MaxPenalty When in overspeed, the player builds up a penalty score wich is number of seconds

in overspeed times actual speed minus speedlimit. PenattyLimit defines how much
penalty is allowed before a warning, emergency stop or fail is issued. Sensible
values may be somewhere in the range of 100-500

TotalMaxPenalty The total penalty allowed, if exceeded, the scenario fails.
FailMessage Text shown on scenario end in case it fails
SuccessMessage Text shown on scenario end for successful scenario
Buzzer Sound a buzzer for each overspeed event

BuzzerFile Sound file (.wav) to play as buzzer sound

You can define the parameters in an array:

params=

{

10, -— limit

KMPH, -- units

1.05, -- excess

3, —-- MaxWarnings

TRUE, -—- fail

200, -—- maxpenalty

1000, -- total penalty allowed before fail

"Failed. You failed to complete the scenario", -- fail message
"Success. You completed the scenario succesfully" -- success message
TRUE —-— sound buzzer

"buzzer.wav" -- buzzer file name

}

This is a convenient way to add many parameters to a script.
You need to create a speedcontrol using the new function:

speedcontrol=Speedcontrol.new(self, table.unpack (params))

This creates a Speedcontrol object in lua named speedcontrol sets up the state Nochecking and
initialises the monitoring function.

If you want to use a buzzer, create a folder named “en” in your scenario folder. In this folder store the .wav file
containing your buzzer sound file.

To start checking overspeed, you need to call the function

speedcontrol :BeginChecking ()

-79 -

Scenario Authors Guide Part Il
Version 1.0

Now the state Checking is active.

If the current consist speed ,exceeds limit*excess, the state changes in Overspeeding.

During overspeeding, several things may happen:

1.
2.

4.

So now

If you decrease the speed enough, the state is changed back to Checking.

If you build up MaxPenalty first warning messages will be displayed on screen, provided the number of
warnings is less than MaxWarnings

If MaxWarnings is reached, an emergency stop is issued. This deactivates all controls, so the player
experiences a real emergency stop.

If you have set the Fail parameter to true, on the next time you exceed maxPenalty, the scenario fails.

let’s introduce the code:

The ScenarioScript. lua file is your basic interface to create new scripts using this function:

—-— Sample script file for speed control function
-— (C)2014 Rudolf Heijink
-- version 0.1 alfa

—-— load some script files

TRUE=1

CONDITION NOT YET MET
CONDITION SUCCEEDED

0

1

CONDITION FAILED = 2

scriptpath=".\\assets\\RudolfJan\\lua\\"

dofile(scriptpath .. "debug.lua")
mydebug=DebugTS.new ()

dofile(scriptpath .. "common.lua")
dofile (scriptpath .. "SpeedControl.lua")

-— You can supply all parameters here, by changing values with your own

values
params=
{
10, -— limit
KMPH, -- units
1.05, —-— excess
3, -- MaxWarnings
TRUE, -—- fail
200, —-— maxpenalty
1000, -- total penalty allowed before fail
"Failed. You failed to complete the scenario", -- fail message
"Success. You completed the scenario succesfully", -- success message
TRUE, -- sound buzzer
"buzzer.wav" -- buzzer file name

}

-80-

Scenario Authors Guide Part Il
Version 1.0

function OnEvent (event)

if event=="start" then
speedcontrol=SpeedControl.new (unpack (params))
speedcontrol :BeginChecking ()
return TRUE

end --start

if event==" stop" then
speedcontrol : StopChecking ()
return TRUE

end

if event==" end" then
speedcontrol :EndGame ()
return TRUE

end
return FALSE
end -- OnEvent
function TestCondition (condition)
if condition == speedcontrol.gConditionName then
speedcontrol :Check ()
return CONDITION NOT YET MET
end
return CONDITION NOT YET MET
end
Steps:

Load all required script modules

Set up your parameters by editing the contents of the params array

Create the Speed Monitor object and start checking (here in the event handler for “start”)

Stop monitoring (for instance at the last event in your scenario), here in a separate stop event.

In the end event you evaluate the performance with respect to adhering to speed restrictions and end
the scenario

5. Finally, you need to create a TestCondition function.

PwNPE

The good news is, you can do that without understanding all details of this fairly complicated script.

The script itself goes in the SpeedControl. lua file. For discussion< | split it up in the individual functions.

-=[I

Speedcontrol. lua

Object class for overspeed check and penalties for TS2014
(C) 2014 Rudolf Heijink, all rights reserved.

Based on an idea of Thomas Ross but completely rewritten
Requires common.lua

Required debug.lua

-=1]

-81-

Scenario Authors Guide Part Il
Version 1.0

RJHSpeedControlversion="0.1 alfa New"
mydebug:writeDebug ("SpeedControl script version "
RJHSpeedControlversion .. " loaded")

KMPH=0
MPH=1

—-— state values for speed control
NOCONTROL=0

CHECKING=1

OVERSPEED=2

PENALTY=3

STOPPING=4

The first part of the script sets up debugging support and some constants.

Then you need to create a SpeedControl object. Objects are maintained in a special table. See chapter B.3 for
details).

SpeedControl = {} —-- the table representing the class, which will double as
the metatable for the instances
SpeedControl. index = SpeedControl -- failed table lookups on the instances

should fallback to the class table, to get methods

function SpeedControl.new (speedlimit, unit, excess, maxWarnings,canfail,
maxpenalty, totalmaxpenalty, failmessage, successmessage, buzzer,
buzzerfile)
local self = setmetatable({}, SpeedControl)
self.SpeedLimitDisplay= speedlimit or 40
self.Excess= excess or 1.05-- allowed percentage overspeed
self.MaxWarnings=maxWarnings or 3
self.unit= unit or KMPH
mydebug:writeDebug ("Units value=" .. self.unit)
-- conversion factors of m/s to km/h or Mph
if (self.unit== KMPH) then
self.conversion= 3.6
else
self.conversion= 2.236932
end
self.gConditionName="SpeedCondition"
self.SpeedlLimit= self.SpeedLimitDisplay*self.Excess
self.CurrentPenalty=0
self.CurrentPenaltylLimit= maxpenalty or 200
self.CanFail=canfail or TRUE
self.Fail=FALSE
self.TotalPenaltylLimit= totalmaxpenalty or 1000
self.TotalPenalty=0
self.PenaltyState=P NOPENALTY
self.PenaltyEnd=FALSE
self.Warnings=0
self.StartedSpeeding=0

-82-

Scenario Authors Guide Part Il
Version 1.0

self.FailMessage= failmessage or "Scenario fails"
self.SuccessMessage=successmessage or "Senario success"
self.Buzzer= buzzer or FALSE
self.BuzzerFile= buzzerfile or ""
mydebug:writeDebug ("Speedcontrol created")
self.CurrentSpeed=0
self.state=NOCONTROL
return self
end

As you see, this function assures all variables are initialized properly. This function BeginChecking starts the
actual monitoring.

function SpeedControl.BeginChecking (self,ConditionName)
self.state=CHECKING
self.ConditionName= ConditionName or "SpeedCondition"
SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName) ;
mydebug:writeDebug ("Speedcontrol begin checking")

end

The function BeginChecking sets the initial checking state, and starts monitoring for the appropriate
condition.

The StopChecking function does the opposite:

function SpeedControl.StopChecking (self)
self.state=NOCONTROL
SysCall ("ScenarioManager:EndConditionCheck", self.ConditionName) ;

mydebug:writeDebug ("Speedcontrol stop checking")
end

The main function for overspeed checking is the Checking function:

function SpeedControl.Check (self)
self.CurrentSpeed = SysCall("PlayerEngine:GetSpeed")
self.CurrentSpeed=self.CurrentSpeed*self.conversion

if self.state==CHECKING then

if self.CurrentSpeed> self.SpeedlLimit then
self.state=0OVERSPEED
self.StartedSpeeding = Call ("*:GetSimulationTime", O0)
mydebug:writeDebug ("Start overspeed " .. self.CurrentSpeed)
end
return
end
if self.state==0VERSPEED then
self:0verspeed/ ()

-83-

Scenario Authors Guide Part Il

Version 1.0
end
if self.state== PENALTY then
self:Penalty ()
return
end
if self.state== STOPPING then
self:EmergencyStop ()
return
end
end
It will call more specialized functions in case overspeed is detected.
function SpeedControl.Overspeed(self)
if self.CurrentSpeed> self.SpeedlLimit then
CurrentTime= Call ("*:GetSimulationTime", O0)
self.CurrentPenalty=self.CurrentPenalty+ (CurrentTime-
self.StartedSpeeding) * (self.CurrentSpeed-self.SpeedlLimit)
self.StartedSpeeding=CurrentTime
if self.CurrentPenalty> self.CurrentPenaltyLimit then
self.state=PENALTY
mydebug:writeDebug ("Start penalty " .. self.CurrentSpeed
"penalty value " .. self.CurrentPenalty)
end
else

self.state=CHECKING

self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty

self.CurrentPenalty=0

if self.Totalpenalty > self.TotalPenaltyLimit then
self.Fail=TRUE
self:EndGame ()

end

mydebug:writeDebug ("No longer overspeed")

end
end

This function calculates the penalty increase, and end the game if the absolute limit is reached. Otherwise it will
set the state to Penalty, leaving it to the Penalty function to punish the driver:

function SpeedControl.Penalty(self)
self.CurrentPenalty=0
self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty
if self.Fail==TRUE then
self:EndGame ()
return
end
if self.MaxWarnings <=self.Warnings then
self:EmergencyStop ()
self.Fail=TRUE
return

-84 -

Scenario Authors Guide Part Il

Version 1.0
end
if self.MaxWarnings >self.Warnings then
self:Message ()
self.Warnings=self.Warnings+1
return
end
There are three penalties implemented: a warning message, a penalty stop and game end.
function SpeedControl.EndGame (self)
mydebug:writeDebug ("End game")
if self.CanFail==TRUE then
self.TotalPenalty=self.TotalPenalty+self.CurrentPenalty
if self.TotalPenalty > self.TotalPenaltyLimit then
self.Fail=TRUE
end
if self.Fail== TRUE then
mydebug:writeDebug ("Fail game")
SysCall ("ScenarioManager:TriggerScenarioFailure",
self.FailMessage) ;
else
mydebug:writeDebug ("End game, success")
SysCall ("ScenarioManager:TriggerScenarioComplete",
self.SuccessMessage) ;
end

end
end

EndGame will first determine if the scenario is completed successfully. The designer has a lot of control about
this and can even decide that a scenario never fails due to overspeed.

The Message function is straight forward:

function SpeedControl.Message (self)
mydebug:writeDebug ("Overspeed message, warning " .. self.Warnings)
if (self.unit==KMPH) then
unittext="km/h"

else
unittext= "Mph"
end
if self.Buzzer==TRUE then
SysCall
("ScenarioManager:PlayDialogueSound", self.BuzzerFile) ;
end
SysCall ("ScenarioManager:ShowAlertMessageExt", "Overspeed",
"Exceeding speed limit of " .. round(self.SpeedLimitDisplay)
unittext .."\nActual speed is " .. round(self.CurrentSpeed) .. unittext,
10, "u)
self.state=0OVERSPEED
end

-85 -

Scenario Authors Guide Part Il
Version 1.0

The penaltybreak disables the control and creates a full stop. Actually, this function maintains two states:
initiate a full stop and watch till the train actually stopped before releasing the controls again.

function SpeedControl.EmergencyStop (self)

if self.state ==STOPPING then
CurrentSpeed = SysCall("PlayerEngine:GetSpeed")
CurrentSpeed=CurrentSpeed*self.conversion
if (CurrentSpeed <1) then
SysCall ("ScenarioManager:UnlockControls")
self.state= CHECKING
if self.CanFail==TRUE then
self.Fail=TRUE
end
return
end
else
mydebug:writeDebug ("Emergency stop")
SysCall ("ScenarioManager:ShowAlertMessageExt", "Penalty
stop", "Excessive overspeed.",10,"")

SysCall ("PlayerEngine:SetControlValue", "Regulator", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "Reverser", 0, 0.0);
SysCall ("PlayerEngine:SetControlValue", "TrainBrakeControl", O,

1.0);
SysCall ("ScenarioManager:LockControls")
self.state=STOPPING

end
end
Things to do:

1. Save game state and resume from a saved game.
2. Localizations and better customization of the messages.
3. Maybe add new punishments

11.6 Speed limit monitoring

The script in this chapter can be very useful for routes where speed restrictions do not appear in the HUD. An
example is the Albula line. It has speed signs, but these are very small and not always visible.

This scenario warns you both inside the cab and outside the cab in advance, so you can adjust your speed.
The ScenarioScript.lua is simple:

1. You need to create at least one event, that starts the monitoring. In this event you construct a speed
monitoring object. (See appendix B.3 for more background). You must specify four parameters:
a. The desired warning distance
b. The units km/h (KMPH) or MpH (MPH)
c. The direction to look for (FORWARD or BACKWARD)
d. Aboolean (TRUE or FALSE) to indicate if you need an audible warning
2. If you want an audible warning, create a subfolder for each supported language and include a .wav
sound file. It is now hard coded buzzer.wav. (See also chapter 10.3).

- 86 -

Scenario Authors Guide Part Il
Version 1.0

3. You need to create a condition check, that calls the SpeedMonitorg.Check () function (see chapter
5.6 for the basics).

4. If you want to stop checking, create another event, calling SpeedMonitor:Finish ()

5. The OnResume () function makes sure monitoring is restarted if you continue a saved game. It does not
remember a complete game state, so you will get a warning for the next change right away.

—— [

Scenarioscript for RJH Long run scenario Albula line
(C) 2014 Rudolf Heijink

Version 0.1 alfa

11--
RUE=1

CONDITION NOT YET MET = 0
CONDITION SUCCEEDED

CONDITION FAILED = 2

1

scriptpath=".\\assets\\RudolfJan\\lua\\"

dofile(scriptpath .. "common.lua")
dofile(scriptpath .. "debug.lua")
mydebug=DebugTS.new ()

dofile(scriptpath .. "SpeedMonitor.lua")

function OnEvent (event)
if event=="start" then
speedmonitor=SpeedMonitor.new (250, KMPH, FORWARD, TRUE)
speedmonitor:Begin ()
return TRUE
end
return FALSE
end

function OnResume ()
speedmonitor=SpeedMonitor.new (250, KMPH, FORWARD, TRUE)
speedmonitor:Begin ()
mydebug.writeDebug ("Resumed speed monitor")

end
function TestCondition (condition)
if condition == speedmonitor.ConditionName then
speedmonitor:Check ()
return CONDITION NOT YET MET
end
return CONDITION NOT YET MET
end

The actual script is in a class file SpeedMonitor. lua

-87 -

Scenario Authors Guide Part Il
Version 1.0

There is a constructor to set up variables, which is straight forward. You must translate the m/s speed values to
km/h or Mph values.

The Begin () function starts the actual monitoring

The Check () function performs a check and displays the message. The warned state variable prevents that
messages are displayed continuously.

= 1[I

SpeedMonitor.lua

(C) 2014 Rudolf Heijink

Monitors next change in speedlimit and informs you with a display message

Requires:
common . lua
debug. lua

Sound recorded by Mike Koenig http://soundbible.com/1206-Door-Buzzer.html
11--

RJHSpeedMonitorversion="0.1 alfa New"
mydebug:writeDebug ("SpeedMonitor script version "
RJHSpeedMonitorversion .. " loaded")

-— Some constants

EndOfLine = 0
LimitNoSigh = 1
LimitSign = 2
NoChange= -1
NotInitialised= -2

KMPH=0
MPH=1

FORWARD = 0
BACKWARD = 1

SpeedMonitor = {} —-- the table representing the class, which will double as
the metatable for the instances
SpeedMonitor. index = SpeedMonitor -- failed table lookups on the instances

should fallback to the class table, to get methods

function SpeedMonitor.new(distance, unit, direction, buzzer)
local self = setmetatable({}, SpeedMonitor)
self.WarningDistance =distance or 500 -- warning distance
self.Distance=10000 -- distance to next speed limit
self.CurrentSpeedlLimit= 0 -- current speed limit
self.LimitType= NotInitialised -- type of next speed limit
self.NextSpeedLimit= 1000 -- value of next speed limit
self.Buzzer= buzzer or FALSE -- use a buzzer

-88-

Scenario Authors Guide Part Il

Version 1.0
self.unit= unit or KMPH -- unit for speed limit
if (self.unit== KMPH) then
self.conversion= 3.6
else
self.conversion= 2.236932
end
self.Direction= direction or FORWARD
mydebug:writeDebug ("SpeedMonitor created")
self.warned=FALSE
return self
end
function SpeedMonitor.Begin(self, ConditionName)
self.ConditionName= ConditionName or "SpeedMonitor"
SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName) ;
limit=SysCall ("PlayerEngine:GetCurrentSpeedLimit")
self.CurrentSpeedLimit=round (limit*self.conversion) —-- change m/s into

km/h or Mph
mydebug:writeDebug ("SpeedMonitor begin checking")
return TRUE;

end

function SpeedMonitor.Check (self)

self.LimitType, self.NextSpeedlLimit,self.Distance=SysCall ("PlayerEngine
:GetNextSpeedLimit",self.Direction)

self.NextSpeedLimit=round (self.NextSpeedLimit* self.conversion)

self.Distance=round (self.Distance)

if (self.WarningDistance> self.Distance and self.warned==FALSE) then

if (self.unit==KMPH) then
unittext="km/h"

else
unittext= "Mph"
end
if self.Buzzer==TRUE then
SysCall
("ScenarioManager:PlayDialogueSound", "buzzer.wav") ;
end
SysCall ("ScenarioManager:ShowAlertMessageExt", "Speed monitor",
"Speed limit changes to " .. self.NextSpeedLimit .. unittext .."\nDistance
" .. self.Distance .. "m", 10, "")
-- mydebug:writeDebug ("Next speedlimit found "
self.NextSpeedLimit .. "warningdistaNCE=" .. self.WarningDistance
"DISTANCE=" .. self.Distance .. "warned=".. self.warned)

self.warned=TRUE
end
if (self.warned==TRUE) then
limit=SysCall ("PlayerEngine:GetCurrentSpeedLimit")
limit=limit*self.conversion -- change m/s into km/h or Mph
if(limit ~= self.CurrentSpeedLimit) then
self.CurrentSpeedLimit=1imit
self.warned=FALSE

-89-

Scenario Authors Guide Part Il
Version 1.0

mydebug:writeDebug ("speedlimit changed "
self.CurrentSpeedLimit)

end
end
end

function SpeedMonitor.Finish(self, condition)
self.ConditionName= ConditionName or "SpeedMonitor"
SysCall ("ScenarioManager:EndConditionCheck", condition);
end

Things to do:

1. Test OnResume functionality

2. Support for miles for the warning distance

3. Small bug, at starting the script it creates a message twice

4. Make a difference between a higher speed limit and a more restrictive speed limit.

5. Make the warning distance depend of the difference between the current speed limit and the next
speed limit

6. Localization support

7. Name of the sound file not hard coded, safety check for the existence of the sound file

8. Add code to interrupt warning messages, instead of stopping the script class.

9. Combine the basic code with additional functionality like warning for signals and AWS handling

11.7 Monitoring closing the train doors

This script is quite straight forward if you studied the other examples. | called it Guard because the idea is to do
fancy things around the station stops. The start is easy, | want to check if the train doors are open or closed.
When the doors are closed after a station call, the driver is informed and the guard blows the whistle.

The core piece of code is this function:

function Guard.Check (self)

sl=SysCall (self.van

":GetControlValue", "DoorsOpenCloselLeft",self.index) or ERROR2
s2=SysCall (self.van

":GetControlValue", "DoorsOpenCloseRight",self.index) or ERROR2

mydebug:writeDebug ("Doors state left=" .. sl .." Right=".. s2)
if (sl+s2==0) and (self.DoorsLeft+self.DoorsRight>0) then
-— if sl+s2 = 0 then the doors are closed now, only perform

action if doors were open previously
self.DoorslLeft=sl
self.DoorsRight=s2
self:ShowWarning ()
return
end
self.DoorslLeft=sl
self.DoorsRight=s2
end

-90-

Scenario Authors Guide Part Il
Version 1.0

The statement

sl=SysCall (self.van .. ":GetControlValue", "DoorsOpenCloseLeft",self.index)
or ERROR2

monitors the door state. 0 means door closed, 1 means door is open. | use here self.van as a parameter. For
EMU’s and DMU’s you can use PlayerEngine, but for coaches towed by an engine, you need to refer to the
vehicle number of the coach. This means that this control will only detect the door state of this particular coach.
For the sample | used a coach in the middle of the train. You may change the code to support an array of coach
numbers.

The rest of the code is straight forward, using the same techniques you see in other scripts, so | just publish the
code here:

- [

Guard.lua
(C) 2014 Rudolf Heijink
Monitors open/close doors and lets the guard blow the whistle

Requires:
common. lua
debug.lua

11--

RJHGuardversion="0.1 alfa"
mydebug:writeDebug ("Guard script version " .. RJHGuardversion .. " loaded")

-— Some constants

DOORS_OPEN=1
DOORS_CLOSED=0
ERROR= -100
ERROR2= -200

Guard = {} —-- the table representing the class, which will double as the
metatable for the instances
Guard. index = Guard -- failed table lookups on the instances should

fallback to the class table, to get methods

function Guard.new(van, whistle, buzzer)
local self = setmetatable({}, Guard)
self.Buzzer=buzzer or false
self.whistle= whistle or ""
self.van= van or "PlayerEngine"
self.index=0 -- currently not used

-91-

Scenario Authors Guide Part Il

Version 1.0
self.DoorslLeft=SysCall (self.van ..":GetControlValue", "DoorsOpenCloseLeft", se
1f.index) or ERROR
self.DoorsRight=SysCall (self.van ..":GetControlValue", "DoorsOpenCloseRight",
self.index) or ERROR

mydebug:writeDebug ("Guard created")
mydebug:writeDebug ("Initial Doors state left=" .. self.DoorsLeft .."
Right=".. self.DoorsRight)
return self
end
function Guard.Begin(self, ConditionName)
self.ConditionName= ConditionName or "Guard"
SysCall ("ScenarioManager:BeginConditionCheck", self.ConditionName) ;
mydebug:writeDebug ("Guard begin checking van=" .. self.van)
return TRUE;
end
function Guard.ShowWarning (self)
if self.Buzzer then
SysCall ("ScenarioManager:PlayDialogueSound",self.whistle);
end
SysCall ("ScenarioManager:ShowAlertMessageExt", "Guard:", "Doors are
closed",10)
end
function Guard.Check (self)
sl=SysCall (self.van
":GetControlValue", "DoorsOpenCloseLeft",self.index) or ERROR2
s2=SysCall (self.van
":GetControlValue", "DoorsOpenCloseRight",self.index) or ERROR2
mydebug:writeDebug ("Doors state left=" .. sl .." Right=".. s2)
if (sl+s2==0) and (self.DoorsLeft+self.DoorsRight>0) then
-— if sl+s2 = 0 then the doors are closed now, only perform

action if doors were open previously

self.DoorsLeft=sl
self.DoorsRight=s2
self:ShowWarning ()
return

end

self.DoorslLeft=sl

self.DoorsRight=s2

end
function Guard.Finish (self, condition)

self.ConditionName= ConditionName or "Guard"
SysCall ("ScenarioManager:EndConditionCheck", condition);

-92-

mydebug:writeDebug ("Guard stop checking")

end

And a usage example ScenarioScript.lua

- 1[I

Scenarioscript for testing Guard functions
(C) 2014 Rudolf Heijink
Version 0.1 alfa

11--

DEBUG=true

scriptpath=".\\assets\\RudolfJan\\luadev\\"

dofile(scriptpath .. "common.lua")
dofile(scriptpath .. "debug.lua")
mydebug=DebugTS.new ()
dofile(scriptpath .. "Guard.lua")
params={

"22948520",

"conductorwhistle.wav",

true

}

function OnEvent (event)
if event=="start" then
guard=Guard.new (unpack (params))
guard:Begin ()
return TRUE
end
return FALSE
end

function OnResume ()
mydebug=DebugTS.new ()
guard=Guard.new (unpack (params))
guard:Begin ()
mydebug.writeDebug ("Resumed guard")

end
function TestCondition (condition)
if condition == guard.ConditionName then
guard:Check ()
return CONDITION NOT YET MET
end
return CONDITION NOT YET MET
end

-93-

Scenario Authors Guide Part Il
Version 1.0

Scenario Authors Guide Part Il
Version 1.0

A. Appendix Control functions

Following paragraphs show the names of default controls used. They may or may not work properly when
activated in scripts.

A.1 Train Controls

Control name Description Comments
SimpleThrottle Speed Up / Slow Down
SimpleChangeDirection Switch Directions
Reverser Increase / Decrease Reverser
Regulator Increase / Decrease Throttle
CombinedThrottleBrake Combined Throttle and Brake
Gearlever Increase / Decrease Gear
TrainBrakeControl Increase / Decrease Train Brake
EngineBrakeControl Increase / Decrease Locomotive Brake
DynamicBrake Increase / Decrease Dynamic Brake
EmergencyBrake Emergency Brakes
HandBrake Handbrake
Horn Horn
Bell Bell
Wipers Wipers
Sander Sander
Headlights Headlights
AWS Automated Warning System control Represents the actual state of the
AWS
AWSReset Automated Warning System Reset
control
AWSClearCount Increase remented for every ramp than
sounds a bell
AWSWarnCount Increase remented for every ramp than
sounds a buzzer
Startup Engine Startup / Shutdown control Value 1= start, value -1= shut
down
Wheelslip Wheelslip Used for visibility objects?
DoorsOpenCloseleft Open / Close Doors on left side
DoorsOpenCloseRight Open / Close Doors on right side

-94 -

Scenario Authors Guide Part Il
Version 1.0

A.2 Electric Locomotive Controls

Control name Description Comments
PantographControl Raise / Lower Pantograph 0=down, 1=up
FrontPantographControl Raise / Lower Front Pantograph

RearPantographControl Raise / Lower rear Pantograph

A.3 Steam Locomotive Related Controls

Control name Description Comments

FireboxDoor Open / Close Firebox

ExhaustinjectorSteamOnOff ~ On/Off Exhaust Injector Steam

ExhaustinjectorWater Increase /Decrease Exhaust Injector
Water

LivelnjectorSteamOnOff On/Off Live Injector Steam

LivelnjectorWater Increase / Decrease Live Injector Water

Damper Increase / Decrease Damper

Blower Increase / Decrease Blower

Stoking Increase / Decrease Coal Shovelling

CylinderCock Open / Close Cylinder Cocks

SteamHeating Steam Heating

WaterScoopRaiseLower Raise / Lower Water Scoop

SmallCompressorOnOff On / Off Small Compressor

A.4 Output values for Dials

Control name Description Comments
Speedometer Speedometer

Ammeter Ammeter

RpmbDial Revolutions per minute

Accelerometer Accelerometer (kN)

A.5 Gauges steam

Control name Description Comments
SteamChestPressureGauge Steam Chest Pressure Gauge

BoilerPressureGauge Boiler Pressure Gauge

SteamHeatingPressureGauge Steam Heating Pressure Gauge

WaterGauge The water level in the boiler

SafetyValve Safety valve state for audio / effects

-95-

Scenario Authors Guide Part Il
Version 1.0

A.6 Gauges brakes

Control name Description Comments
BrakePipePressure** Pressure in the brake pipe
VacuumBrakePipePressure** Pressure in the vacuum brake pipe
AirBrakePipePressure** Pressure in the air vacuum brake pipe
TrainBrakeCylinderPressure** Pressure in the train brake cylinder
MainReservoirPressure** Pressure in the main reservoir
VacuumBrakeChamberPressure** Pressure in the vacuum brake cylinder
EqReservoirPressure** Pressure in the equalising reservoir
BrakeBailOff* Release loco brake when train brake

set

**Add PSI or INCHES to the end of the name depending on the units desired.E.qg. BrakePipePressureINCHES

A.7 Gauges miscellaneous

Output controls added for the sound system

Control name Description Comments
Current Current in Amps

TractiveEffort Tractive Effort

RPM RPM in revolutions per minute

RPMDelta Lagged and processed RPM DELTA value

CompressorState Compressor State On(1.0)/0ff(0.0)

-96 -

Scenario Authors Guide Part Il
Version 1.0

B. Useful lua constructs

B.1 Case statement in lua

This version uses the function switch (table) to add a method case (table,caseVariable) to a table
passed to it.

function switch (t)

t.case = function (self, x)
local f=self[x] or self.default
if £ then
if type (f)=="function" then
f(x,self)
else
error ("case "..tostring(x).." not a function")
end
end
end
return t
end
Usage
a = switch {
[1] = function (x) print(x,10) end,
[2] = function (x) print(x,20) end,
default = function (x) print (x,0) end,
}
a:case (2) -— l1e. call case 2
a:case (9)

B.2 Associative arrays

-— Support for associative arrays

—-— function to iterate over a table and retieve its idex (i) and wvalue (v)
-- Source: Programming Lua v5.2

local function iter (a, 1)
i =1 + 1
local v = a[i]
if v then
return i, v
end
end

—-- function that returns the next index, value pair of an associative array
—-—- Source: Programming Lua v5.2

function ipairs (a)

-97 -

Scenario Authors Guide Part Il
Version 1.0

return iter, a, 0
end

—-- function to fill associative array with index wvalues.
-—- returns number of destinations

function createIndex (a)
for i, v in ipairs(a) do
a[v]=i+indexStart-1
print(v," ", alv])
end
return i
end

B.3 Object classes

In lua you simulate object classes. This is done using a metastable. In the example a class DebugTs is created.
You can create an instance by assigning the new function to a lua variable, e.g.

Debugger= DebugTS.new ()

The call for instance:

Debugger:writeDebug (" text”)

Or

Debugger.writeDebug (self"™ text”)

Note the subtle difference in using a dot (.) or colon (:). The colon is syntactic sugar, then you don’t need the
self parameter.

DebugTS = {} -- the table representing the class, which will double as the
metatable for the instances
DebugTS. index = DebugTS -- failed table lookups on the instances should

fallback to the class table, to get methods

function DebugTS.new (logfile,mode)
local self = setmetatable({}, DebugTs)
if logfile== nil then

self.logfile="1logfile.txt" -- file name
else
self.logfile=logfile
end
if mode==nil then
self.mode="a+" -- open mode
else
self.mode=mode
end

-98 -

Scenario Authors Guide Part llI
Version 1.0

-99-

Index

CVERSION.....ottiieiieecteee ettt 10, 25
EX SPEEU it itiiee ittt 20
Accelerometer............cccooveeeiciiieicciiee e 95
ActivateCameraevvviiveeeeeiieieeeeeeeeeeeee e, 51,52
AFB e 63
AirBrakePipePressure...........cc.cccoeevvvveevciieeeecnnnnn. 96
ALERT ..ttt 41
Alert MESSALE .oovvceveeeeeciee e 39
AMMEEET ... 95
R3] o (0] (o [=Y SO RPSPRRRRTRRRN 12, 60
ASSOCIAtIVE Array ..cvvveiiieierereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 97
ATB. .t e e e e e e e e e 63
ATBEGcutiiieeeeee ettt eeeerrree e e e e e cirareeee e e e 63
ATBNGovriiiiiieeeceeirieeee e eeecrrree e e ee e irrreeee e e e 63
audible alert.......cooveeeeiiii e 75
F= 10 Lo 1o U UUUPROE 70
AWS .., 62, 68, 75,76, 77,90, 94
AWSClearCount...........ccceeeeveiiiiieeeeeeeeeccirreeee e 94
AWSRESEL ..vvveeieeieeiriieeee e 68, 94
AWSWarnCount.......ooovviiiiiiiiiiniicrriiiiciee e, 68,94
basic KNOWIEdEEccuvvevevciieiieiee e, 8
BeEIN oo, 88
BeginCheckingcccouveeecvieeeennen. 76,77,79, 81, 83
BeginConditionCheck 37,76, 83, 89, 92
Bell.....eoeeeeeeee e 94
BIOWEN ...ttt 95
BoilerPressureGaugecccceeeecieeeeecveeeeennnen. 95
BrakeBailOff..............ccoeoiiiiie e, 96
BrakePipePressure...........cocceeeeeeeeeecveeecceieee e 96
CabCameracce e 52
CABVIEW ..ot 52
Call e 17
CAMEIa MANAEE, weeveren 51
CameraManager........cueueeeveveeerererereeerererererererererenen. 33
CamNEXIRV....coiviiiiiiiiiiiieieiiieierererererererereeereeeresesenen 56
CamPrevioUSRVcucueveveviiiieriieieneienenereneeeeeeerenenen 56
CancelDeferredEvent........ccccveeevvciieeiicciieee e 36
CarriageCamera.......uuevevererererererenererererererererererereeen 52
CASE SENSITIVE...evvririririiereiereierererererererererererererererenen 45
case statementovviiiiiiiiiiiiiiiieier 97
CheCK e 88
(01 0 1Yol (] o = SR 83, 87
Chris Longhurst........cceeeeiccciiiieieeeeeccciiieeeee e 45,70
ChriSTraINS oo e 63

-100 -

Scenario Authors Guide Part Il
Version 1.0

CinematicCamera.....cccoeecuieieeeeei e 52
closing the train doors.......ccccvvvcieeeiicieee e 90
COlON Lt 98
CombinedThrottleBrakec.ccoceevvieriveeennnenn. 94
compilation rrorsc.ceeeecveeeeecieee e 18
Compile/Generate MD5...............ccoeeevveveennnn, 16, 26
CompressorState.........cccccvvvvviiiiiiiiiiiiiieiieeeeeeee 96
condition check......coovvvivieiiiiiiiee e 17
CONDITION_FAILEDccccvververennnnnn 37, 38,77, 80, 87
CONDITION_NOT_YET_MET37, 38, 77, 80, 81, 87, 93
CONDITION_SUCCEEDED................. 37, 38,77, 80, 87
CONSISt LYPE .. 65
Coupling eVeNtevvviiiiiieece e 29
CouplingCamera......coccvueeeerciiee e eceeee e 52
CreateINdeX .. vcieee e 98
current direCtory....covcvvee e 13
CylinderCock.........ccoocvveeiiiiiieieieee e 95
DamPer ... 95
DEBUG. ..o 10, 19, 20, 21, 22, 25, 75, 93
debug.luacooociiiii e 73
debugging informationcccoeceeiiiciiii i, 21
debugging messages......ccccveeeeecieeeeecieee e 72
decompileooeeeeiieeeeeee e 60
delaY. .. 17
destination boards.......ccccceeveeereceeccie e 65
DestinationBoardsccceeeeriieeeiniieee s, 62
DisplayThrottle........c.cceeeccveeeeciieeeeeceee e, 50
o o) {11 13,73,77,80, 87,93
DoorsOpenCloseleft.............cccoceeeeviiiiieccieeeennen. 94
DoorsOpenCloseRight...............ccccocciiieciiieeennen. 94
Ot e 98
AStFOV e 53
DYyNamIicBrakecocovvveivciieiicieee e 56, 94
emergency STOPevvvvvevreieeeeeeeeeeeeeeenennn 30, 63,79, 80
EmergencyBrake............ccocceiiiiiiiiiniiee e, 94
EMergencyStop ..cooeeeeeeririic 84, 86
EnableAsyncKeyscccocvveeeeciieeecceee e, 20
eNd OF liNE c.eeiiieieiieee e 66
EndConditionCheck................... 37, 38, 76, 83, 90, 92
ENAGAME..cciiiiiiiiiiiieenieceitc et 85
engine simulation functionsccccecoieiiiiieeennns 60
EngineBrakeControlcccoovineiiiiiiciieeee, 94
EqQReservoirPressure.ccccccvveveeeeeeececnnvnnnnnn. 96

event.8, 24, 25, 28, 29, 30, 31, 32, 36, 37, 38, 40, 41,
42,50, 51,73,77,79, 81, 86, 87,93

ExhaustinjectorSteamOnOf.............cc.cccoeeveerennen. 95
ExhaustinjectorWater..............cccccevviiiiinieen e, 95
extended info MESSALE ...ocvvvveeiiiiieeiciiee e 39
ExternalCamera....cccccveeeeeiiiiecnniereeeeceeeeeireeeee e 52
failed...cccoovvveeerneenn. 31,72,75,79, 80, 82, 88,91, 98
FAIULE. e 31, 32, 37
FHEFIUSH et 21
FIEIWIITE e 21
final destination......cccceeeveeeeeece e 24, 32
FINISN . ceiiieeeeee e 87
FIireboXDOOEoocoovviiiiiiiiieieeeeieeeee e 95
FreeCamera ..o ieeeeee e, 52,54
FrontPantographControlccccoeeienennnen. 95
Frontview Camera......ccccceeeeeeieiieeiiiieeeeeeeeeviiceeeeeees 52
FUI SCrEEN e 23
GEAILEVEN ...t 94
GetAcceleration.........eueeeeeeeeeeeeieeieieieeeeeeeeeeeeeeeeeeeeens 67
GetConditionStatusooeevvvvieeeeee e, 38
GetConsistLengthcccveviieciiiiiiciee e 65
GetConsistTotalMass.......cccoveeeeeeeeeiiiiireeeee e, 65, 74
GetCONSISTTYPE...uviiiiieiei ittt 65
GetControlMaximuUmM..........eeeeeeeeeeeeeeeeeereeereeereeeeenens 62
GetControlMiNiMUMeevveeeeviiieeeiieeeeeeeeeeeeeeeeeeeees 62
GetControlValue.........coovveeiieeeeiieeeeieeeee e 61
GetCurrentSpeedLimit.........ccccceeeeveiiciiieeeeeennn. 66, 89
GetCUIrVatUre ... ee e 64
GetCurvatureAhead........cccovvvveeeiiiiiieieieeeeeee e 65
GetFIrebOXMaSS.....ueviiiiiiiiiieeeee e 65
GetGradieNnt.....uueeeeeeeeiieeeeeeeieeeeeeeeeeeeeeeeerererer e, 64
GetNextRestrictiveSignal..........cccoeeeieiieeeiciiieeeens 67
GetNextSpeedLimitcccovvveeeeiiiiciiiiiieeee e, 66, 89
GEetRVNUMDBET ..evevivieeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 65, 74
GEtSEASON.. i ittt eeeeaae 69
GetSpeedcveviciee e 66, 83, 86
GetTimeOfDayccveev v 69
GetTotalMassuvveeeeeeeeiiiireeeee e e 65
O VIa BVENT L.eiii 29
GUAI ceiireeeeeee et eeetre e e e e eeetarereeeeeeeeanens 90
GUANA. UG cooeiee e 91
GUID ettt 17,44, 49
HandBrake.........cccccoooevvivvveieeeeeeeeiireeeee e 94
HeadlightS......ccovveeieieiieee e 62,94
HeadOutCamera......cccvveeeeeeeieiinreeeeeeeeeeeiireeeee e 52
Helloworldcooooeeiiiiii 24
heX @ditor ...uueeeeiiiiieeee e, 10, 60
hidden events......ccccccciiiiiiiii 38

-101-

Scenario Authors Guide Part Il
Version 1.0

HighlightControl........cccoecoviivieiiiiee e, 49, 56, 57
o Lo o o T 94
[11 N 9
htmlcode......ooooiiiii 49
HTML MESSAZE ... e 39
HTML MESSAZES ..vvvvvuruinineiiiiiiiiiiiiiiiiiiaaaaanes 44
INCHES ...t 96
INFO i 41
INIEIAlISE et 35
10.0PEBN .ceiiiiiiii 21, 73,99
PAINS ceeeeiieieie 98
IsControllockedueeveiiiiiiiiiiiieeiecceeeeeeeee e 62
IsDialogueSoundPlaying......cccccovveeeicieeeeecieeeeennen. 70
IsVideoMessagePlayingcccoceeeecieeeeecieeeeeennnen. 71
[=] USRI 97
JUMPT O e 54
last iNSTrUCLION ...cocoeviiiiiiiiii 32
launch optionsccccveeiiccieiic e, 20
Left head out camera.......cccocccvveeeeeececccciireeeee e, 52
length of the consistccccceeveceeiiccee e, 65
=Ty o3 T U= T 53
LivelnjectorSteamOnOffccccevivvieeeennen. 95
LivelnjectorWatercccccovviniiiiienniniiiiieeeen, 95
load event.....cccccoiiiiii 29
localisation.......cccceeeeiiiii 11
[oYor=] 174=Y 4o o H R 45
10 N 62
(e Yol (@o] o1 1) N 62
LOCKCONEIOIS e 36, 86
[088ING SYSLEM ..eviiiiiiie e e 21
LOBMaATE ... 18, 20
LOOKALCONLIOl ... 49,53, 56, 57
LUA
Yo Yo] 9
Y O USSR 9
reference manual.......ccoceeveeeeiiciiiieeeee e, 9
SCript dialog..ueeeeeciieeieieee e 15, 16
tULOrial e 9
A =15 (o] o PSRN 10
[ua-debug-MesSagesccccvvveeeeirreeeeciree e e 20,21
[UF Lo L=\ 13,77,93
MainReservoirPressure............cccocveeeeeeesicinvneeennn. 96
MAINTENANCE cuuuiiei i 13
media
10CAlIZAtION ...vvvveieee e 11
MNESSAEES e e ieieee e e e e e e e 39
MSG_BOTTOM...cceeiriiieeciieee ettt e 43
MSG_CENTRE.....coeeitiiieeieee ettt e 43

MSG _LEFT e 43
MSG_LRG ..ottt 43
MSG_REG...cciiiiieiieiiecticee et 43
MSG_RIGHT oo 43
MSG_SIMALL ettt 43
MSG_TOP...coiiiieeeciee et 43
MSG_TOPLEFT c..eveieiee ettt 43
MSG_TOPRIGHT ..coviiiiiiiiieeriee e 43
MSG_VCENTREeiiiieiiiiiieesiee e 43
mydebug:writeDebug........cccceeeeeeeieiieee e, 84
NIENT tIME . 69
(o] o] =L SRSt 82
0bjJECt ClasSSES..cciiiiiiiiciiee e 98
object oriented techniquescccceeeecveeeecciieeeens 72
OnEvent...... 25, 28, 29, 30, 40, 50, 73, 77, 81, 87, 93
ONRESUME ...ceiviiiiiiiiiiiiereieieieeereeeeerererererererererererenene 36
ONSAVE...coiviiiiiiiiiiiieieieierererereeereeeeereeereeeeeeeeeeeeeeeeeeene 36
Open Folder...........cccoooiiiiiiiiec e 16
05.date . uueeeeeiiecee e, 21,73,99
OVEISPEEUuvieiiiiieee ettt eettee et e e eeire e e esraee e e 79
overspeed detection.......cccoccveeeiiciieesieiieee e 78
PantographControl.......cccccccevvciieeiiciiee e, 62, 95
PArAMS AITAY...iiiiiiiiiiiieeeeeereere e e e e rrere e e eeeeenes 81
parent dir€Ctory....cccocvveeiiiceee et 13
PASSENEET VIEW .eeiiiiieiiiiiiieeeeeeeniirereeeeessesssnnneneees 52
PENAILY, oo 84
penaltybreak........ccccocceeiiiiiiii e, 86
PErfOrmManCe........ceeeeciiee e 17
PlayDialogueSound...........ccccccuu...... 70, 76, 85, 89, 92
PlayVideoMessage.......cccccueeeeecuveeeeccnveeeeecneeennn 70,71
Print...cccoeeveeevieecieeeeeen 10, 19, 20, 21, 25, 75,76, 77
Y [96
RearPantographControl..................cccoeeeeieneennen. 95
RegisterRecordedMessage........cccceeeeeeecnvvnnnnnn. 49, 50
Regulator.......cceeenneee. 49, 50, 56, 57, 63,72, 86,94
Reloadccocvvivieiiiiieeecec e, 16,17, 18, 26
RestoreCameraToDefault..........ccccceevniiiinnnnnnn. 54, 56
REVEISEr..ccvuiieeeeeeeetieeeeeee e, 56, 63, 72, 86, 94
RoOIlING Start ..cccvvveeeeiiee e 63
RPIM ..ottt ettt 96
RPMDeltaoooieiiiiiiiececcec et 96
RpmDial.......ccooooiiiiiiii e 95
SafetyValveccooviiiiiiii e, 95
SANAEN ..ot 94
scenario editor................ 8,15,17, 26, 30, 54, 58, 65
Y ol=Y =1 4 o1 (o] Lo =] o 12
SCENArIOMANAGEN ..cvevees 33
ScenarioScript.lua............... 11, 13, 14, 73, 80, 86, 93

-102 -

Scenario Authors Guide Part Il
Version 1.0

Kol 1 I S 10, 16
SCHIPL MANAGEN ..eeiiiiiiiieiteeee e 19
SCrIPt MaNAGer....uviiiiiiiiieiieeee et 20
SCHIPTING ceeieiieeeeee e 10
YT 1 o] [P PO PPN 69
7= | S PP TSPTSP 98
SetControlValue..........ueeeeevivveeeiieieeieeeevieeeieeennnns 58, 61
SEtRVNUMDBET ...viiiiiieiiieieeeee e 65
SETLINGS . ciiiiiiiiiiiiiiee e 23
ShowAlertMessageExt 22,41, 85, 86, 89, 92
-ShowControlStateDialog.........ccccccveeeeiiveeeeciiennn. 59
ShowInfoMessageExt...........cc.oc...... 42,44,49,57,74
SHOWMESSAZE ...ccevvveeeciiieeeeeee et 40
SIZNAl STAtE ..vvveeeciieee e 67
SIMPle MESSAZE.....vvveecrieeeeereee et 30, 39
SimpleChangeDirection..............cccccevviivieeriinennnn. 94
SimpleThrottle.............ccccoiviiii e, 94
size

MNESSABE ..eeeieerniiieeeeeeetreie e e e e eerennne e s e eererenanaaes 43
SmallCompressorOnOffcccceeeviiiveiicinennnn. 95
Y oJ=T=To 20, 41, 56, 66, 81, 86, 89, 94
speed ChaNngecvvvvvviiiieiccieee e 66
speed checking......cccocvveiiiciiiiiccieee e 78
speed iNKM/N ..o 66
speed iN MPh ... 66
speed Mtoeeieiieeeeiee e 66
SpeedControl.luaccccvveeeeciiieeeeee e, 81
SpeedControl.Message.......ccccueeeecvveeeeciveeeecireeenn, 85
SpeedMonitor.lUa.......ccveeeeciieeeeeee e 87
Speedometer..........ccccooveciiiieee e 95
StartingSave.bin..............cccocooiiii 63
- [(VT T PPN 58, 62, 63,94
state diagram.....ccceeeiiecciiiiee e 78
SteamChestPressureGauge.............c.cccveeeeeuvnennn. 95
SteamHeating.........cccccoeovciiiei e, 95
SteamHeatingPressureGauge...............ccccceevrvnnnnns 95
StOKINGooiiiiieecee e 95
STOP BVENT ..t 29
StopCheckingcccvveeeeeciveeeeiieee e 76, 81, 83
StopDialogueSoundcccoccuveeeeiiieeeciiieee e, 70
StopDisplayThrotleccceeveieieeiiieeecieee e, 50
StopHighlightControlcccccoveeiiiieeenne. 50, 56, 57
StopVideoOMESSAZE ...cccuvvveeeeiireeeeiree e 71
SEIINES oottt 16
SUCCEEAR ...covvvvieiiieiiiieiieeeeeeeeeeeeeeee e 31, 54, 62
SUCCESS cevvnnrirrvnneeervnnnenens 31, 32,37, 61, 79, 80, 83, 85
SYNTACTiC SUGAT ..covveeieieeeeeeeeeeeeeeeeereeeeereeee e 98
SYNEAX €ITOIS ceieieeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e eeee e e e e eeeeeeeees 18

SYSCall e 17,34
TASKLOEZ cooevviee ettt e 56
TestConditioncccccvvveeeeeennn. 37,38,77,81,87,93
TeStTraK .ocuevvieeeee et 18, 24
ThOMAS ROSS ..eiiiiieeciiiiiieee e e ettt e e eecrrrree e e e 78
Throttle......cccoevveiiiii 56, 63, 94
time of day....ccveei i 69
TMESTAMP e 22
timetable VIEW 14, 30
[¥0 o] F P 10
oo 3SR 10
tOtal MASS coeieieee e 65
TrackSideCamera......cccceeecveeeeeciiee e e 52
TractiveEffortooooiiiiiieecee e, 96
train length ..o 74
TrAIN MASS e 74
Trainbrake......ueee e 63
TrainBrakeControlcccceeeeeennnns 56, 63, 72, 86, 94
TrainBrakeCylinderPressure................ccccecvveveennneen. 96
TrainControl.......cccocccciiieeee e 56
trigger eventoovveiiiiiei i 29, 30
trigger iNStruCtion........ccvvvvvvviiiiieeee e, 24
TriggerDeferredEvent......cccccvvciieeecciieeeccciieee e, 36
TriggerScenarioComplete.......cccccevveveniecriienns 37,85

-103 -

Scenario Authors Guide Part Il
Version 1.0

TriggerScenarioFailure.......cccocovvevvciieeincieennnnns 37,85
uncoupling event ..o vvcieeeiecen e, 29
UnhideDriverlnstruction........ccccccceeeeeevciiiiieeeeeeeen. 38
UNLOCK....ciiiiieeiee ettt eteeerite e steeestre e sere e ve e 62
UnlockControlscccvvveeeeeeiiiciiiieeeee e, 36, 86
VacuumBrakeChamberPressure................cc.c....... 96
VacuumBrakePipePressure...............ccccccvveeennneen. 96
VIAEO e 70
VirtualBrakecouveeeeeeeeciiiieeeee e e 56
WaterGaugecoeviiiiiiiiiiieeeee et e 95
WaterScoopRaiseLowerccoeeuvveeeeeeeennncnnns 95
weather SeqUENCEoccvvvvviciieeicee e 70
WeatherController.......coccccvveeeiiiieicciiiieeee e 34
Western Lines of Scotlandcccoccvveeviiieeenciiennnn. 78
WHEEISIIP .eeieeeieeeeeee e 30
Wheelslip.........coociiiiicieeeeceeecee e 94
WINAOWEd MOAE......uuvvveiiieieiiiieeeeeeeeeeveeeeeeeeeeeens 23,59
WindoWsManager........ccceeeeciveeeeciieeeeciieeeeeiveee s 33
L AT AT o= PPN 63,94
WOIKSNOP coieieeeeeee e 13,70,71
XML NOtEPAd ...cceviieeeeieee e e 10
YardCameraococcueeeeecieeee et 52

	Preface
	1 Getting started
	1.1 Introduction
	1.2 Knowledge prerequisites
	1.2.1 LUA basic knowledge
	1.2.2 HTML
	1.2.3 TS2015 scripting

	1.3 Lua version
	1.4 Tools
	1.5 Debugging

	2 Organization
	2.1 Directory structure
	2.2 Development environment
	2.3 Accessing your script from inside TS2015
	2.4 Basic API call
	2.5 Performance
	2.6 Debugging
	2.6.1 Debugging syntax errors in the Scenario Editor
	2.6.2 Using LogMate
	2.6.3 Speed up scenario play
	2.6.4 Print to LogMate
	2.6.5 A logging system

	2.7 Run Trainsimulator in windows mode
	2.8 Hello world

	3 Events
	3.1 The event loop
	3.2 Basic events
	3.3 Adding lua code to the trigger event
	3.4 Adding lua code to the other basic events
	3.5 Event handling for the last instruction

	4 Lua functionality for TS2015
	5 General scenario manager functions
	5.1 Initialisation
	5.2 Saving and resuming a scenario
	5.3 Deferred events
	5.4 Locking controls
	5.5 Forcing scenario completion
	5.6 Condition checks
	5.7 Hidden events

	6 Displaying messages
	6.1 Introduction
	6.2 Simple message
	6.3 Alert message
	6.4 Info message
	6.5 HTML messages
	6.6 Keeping messages for later review

	7 Camera control
	7.1 Camera activation
	7.2 Advanced camera functions
	7.3 The cinematic camera

	8 Tutorial functions
	9 Engine controls
	9.1 Generics
	9.2 Discovering control names
	9.3 Set a control to a value.
	9.4 Get the current value of a control
	9.5 Test if a control exists
	9.6 Lock or unlock a specific control
	9.7 Get the minimum or maximum value of a control
	9.8 Engine controls
	9.9 Rolling start
	9.10 Track information
	9.11 Consist information
	9.12 Speed
	9.13 Signalling interaction
	9.13.1 Signals
	9.13.2 AWS functions

	10 Other functions
	10.1 Time and season
	10.2 Weather
	10.3 Play audio
	10.4 Play video

	11 Scripting application examples
	11.1 Emergency brake
	11.2 Logging your debugging messages
	11.3 Train length and train mass
	11.4 AWS audible alert outside the cab view
	11.5 Overspeed detection
	11.6 Speed limit monitoring
	11.7 Monitoring closing the train doors

	A. Appendix Control functions
	A.1 Train Controls
	A.2 Electric Locomotive Controls
	A.3 Steam Locomotive Related Controls
	A.4 Output values for Dials
	A.5 Gauges steam
	A.6 Gauges brakes
	A.7 Gauges miscellaneous

	B. Useful lua constructs
	B.1 Case statement in lua
	B.2 Associative arrays
	B.3 Object classes

	Index

